Chapter 2 Practice

2.1 Measurement: A Foundation of Good Science

1. Write the following in standard notation:

- 1.62×10^{-5} 0.0000162
- 2.992 × 10⁵ 299,200

2. Write the following in scientific notation:

- 150,000,000 1.5×10^8
- 0.0008923 8.923 × 10⁻⁴

3. Fill in the appropriate values. See how many you can do without looking them up.

a. 1 milliliter = 10 ⁻³ liters	b. 1 kilogram = 1,000	grams
c. 1 mm = 10 ⁻³ m	d. 1 MJ = 10 ⁶ J	

4. Identify the unit represented by each abbreviation.

cm	kg	ng	μL	mL	ML	kJ
centimeter	kilogram	nanogram	microliter	milliliter	megaliter	kilojoule

5. Find the number of significant figures in each measurement:

- 4.300 km
 0.0052 g
 2
- 0.308 kJ 3

6. Complete the following calculations. Answer to the correct number of significant figures.

a. $(1.4 \times 10^{6})(9.1 \times 10^{-5})$ = 1.3×10^{2} (or 130) b. $(5.4 \times 10^{5})/(3.7 \times 10^{-5})$ = 1.5×10^{10} c. $(2.1 \times 10^{4}) \div 3.0$ = 7.0×10^{3} (or 7,000)

2.2 Unit Conversion

7. Solve the following, including units: $(2.021 \times 10^{12} \text{ kJ}) \times \frac{1,000 \text{ J}}{1 \text{ kJ}} \times \frac{1 \text{ cal}}{4.184 \text{ J}} = 4.830 \times 10^{14} \text{ cal}$

8. Solve the following, including units:
$$\frac{5.20 \times 10^8 \text{ g}}{7.85 \times 10^6 \text{ g/m}^3} = 66.2 \text{ m}^3$$

9. How many milliliters are in 5.9 L? 5,900 mL

- 10. How many grams are in 5,300 mg? 5.3 g
- 11. You are laying tile in a kitchen with an area of 9.4 square meters. What is this area in square feet? (1 meter = 3.28 feet)
 100 ft² (This is rounded to two significant digits. 1 m² = 10.8 ft²)
- 12. A large soft drink has a volume of 0.950 L. What is this volume in cm³? 950 cm³
- 13. A stream flows at a rate of 10.4 liters per hour. Convert this rate to cubic meters per day. 0.250 m²/day (Remember, 1 L = 1 dm³, and 1 m³ = 1,000 dm³)

14. A waterway contains 10.3 milligrams of an impurity per gallon of water. How many micrograms of impurity are present per liter of water?

2,720 μ g/L (This is rounded to three significant digits. 1 mg = 1,000 μ g, and 1 gal = 3.79 L)

2.3 Density: Relating Mass to Volume

15. A student working in the laboratory needs 500 g of a liquid chemical whose density is 1.41 g/cm³. What volume of this liquid should he measure?

 $V = m/d = (500 \text{ g})/(1.41 \text{ g/cm}^3) = 354 \text{ cm}^3$ (This assumes three significant digits in 500 g.)

16. What is the mass of a 5.31-mL sample of a liquid with a density of 2.10 g/mL? m = dV = (2.10 g/mL)(5.31 mL) = 11.2 g

2.4 Measuring Temperature

17. The average human body temperature is 98.6 °F. Convert this temperature to degrees Celsius and to Kelvin. 37.0 °C; 310.2 K

18. In July, the average high temperature in New York City is 28 °C. Convert this temperature to degrees Fahrenheit and to Kelvin.

82 °F; 301 K

Challenge

19. Upon graduating with a good GPA and work experience, you are pleased to receive two job offers. Company A offers a salary of \$42,000/year. Company B offers an hourly pay of \$25.00/hour. Assuming that you will work 50 weeks per year at 40 hours/week, use the factor-label method to find your annual income at Company B. Which offer is more lucrative?

Company A: \$42,000/year

Company B: \$50,000/year. Company B is more lucrative.

20. You recently started a candle-making business and need to purchase a large amount of a unique scented wax. You plan to charge \$9.95 per large candle. The wax you need is available from a U.S. supplier for \$24.00/lb, and also from a German supplier for \$0.20/kg. If the current exchange rate is \$1 = \$0.76 and 1 kg = 2.20 lb, which supplier is giving the better price?

U.S. supplier: \$24.00/lb = €40.13/kg German supplier: \$5.50/lb = €9.20/kg

The German supplier is much less expensive.