Chapter 5 Practice

5.1 Lewis Symbols and the Octet Rule

1. Draw Lewis symbols for the following atoms:

2. Draw Lewis symbols for the following ions:

Na⁺	Mg^{2+}	Ca ²⁺	Br ⁻	O^{2-}	S ²⁻
Na ⁺	Mg ²⁺	Ca ²⁺	·Br·-	O 2-	S 2-

5.2 Ions

3. Name the following monatomic ions:

K ⁺	Zn ²⁺	Fe ²⁺	Fe ³⁺	Br⁻	O ²⁻
potassium	zinc	iron(II)	iron(III)	bromide	oxide

4. Name the following polyatomic ions:

NO_3^-	NO_2^-	NH_4^+	SO ₄ ²⁻	CIO ₄
nitrate	nitrite	ammonium	sulfate	perchlorate

5.3 Ionic Bonds and Compounds

5. Name the following ionic compounds:

ZnBr ₂	FeCl ₂	FeCl₃	PbSO ₄
zinc bromide	iron(II) chloride	iron(III) chloride	lead(II) sulfate

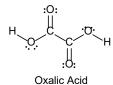
6. Write formulas for the following ionic compounds:

magnesium sulfide	copper(II) chloride	sodium phosphate
MgS	CuCl ₂	Na ₃ PO ₄
ammonium carbonate (NH ₄) ₂ CO ₃	silver nitrate AgNO ₃	lead(IV) nitrite Pb(NO ₂) ₄

5.4 Covalent Bonding

7. Name the following covalent compounds:

 P_2O_5 NCl_3 N_2O_4 BBr_3


diphosphorus pentoxide nitrogen trichloride dinitrogen tetroxide boron tribromide

 CO_2 CO $SiCl_4$ SO_3

carbon dioxide carbon monoxide silicon tetrachloride sulfur trioxide

8. Write the empirical formula and the molecular formula for the covalent compound shown:

molecular formula: C₂H₂O₄ empirical formula: CHO₂

5.5 Distinguishing Ionic and Covalent Compounds

9. Identify each compound as ionic or covalent. Name each compound.

zinc oxide sulfur dichloride iron(III) oxide phosphorus pentabromide

5.6 Aqueous Solutions: How Ionic and Covalent Compounds Differ

10. Indicate whether the following compounds are likely to dissociate in an aqueous solution. How can you tell?

Ionic compounds dissociate when they dissolve in water. Covalent compounds generally do not.

5.7 Acids—An Introduction

11. Write the ions that each acid would form in aqueous solution:

HCI H⁺ and Cl⁻ HNO₃ H⁺ and NO₃⁻

HClO₄ H⁺ and ClO₄ H⁻ and Br H⁺ and Br

12. Name each of the following acids:

HF HNO₃ HNO₂ H₃PO₄

hydrofluoric acid nitric acid nitrous acid phosphoric acid

HBrO₄ HBrO₃ HBrO₂ HBrO

perbromic acid bromic acid bromous acid hypobromous acid