
Introductory Chemistry Chem 103

Chapter 4 – Light and Electronic Structure

Lecture Slides

The Electromagnetic Spectrum

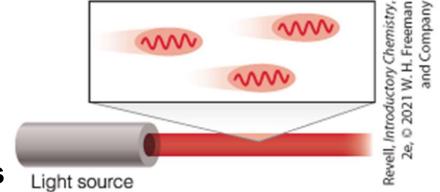
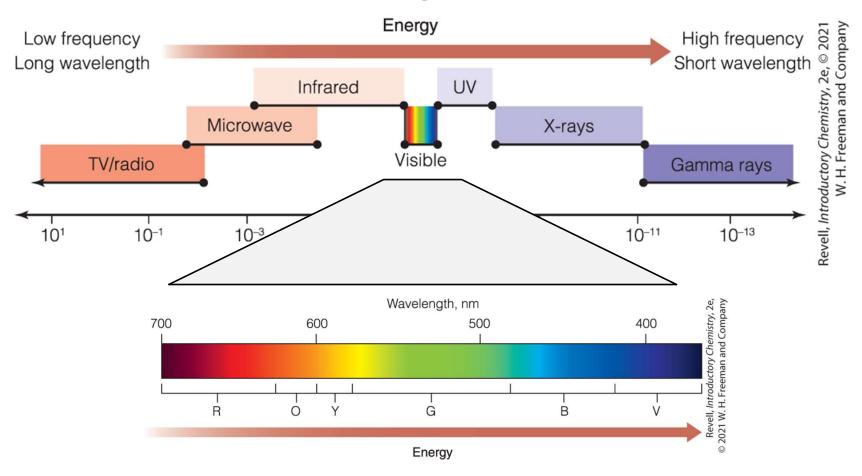
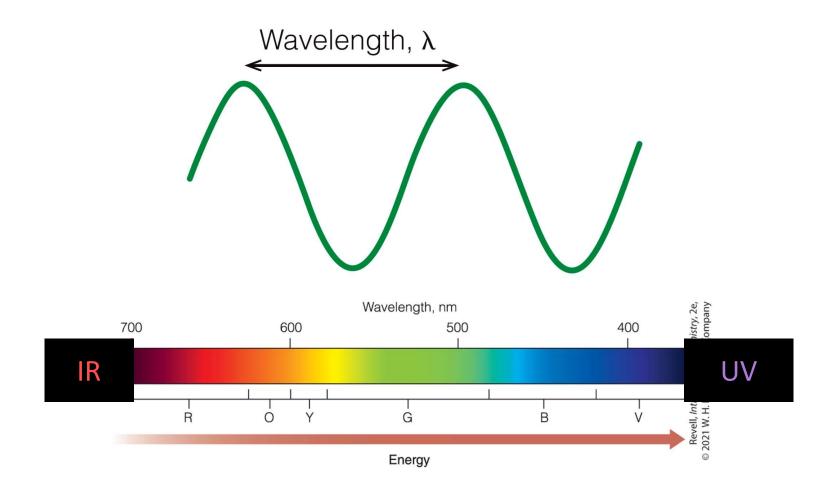


Photo credits clockwise from top left: Anna_Om/Deposit Photos; Gerald D. Tang / TangsPhoto Stock; Kevin Revell


What is Light?

electromagnetic radiation


- a form of energy
- travels in waves
- exists in increments called photons

The Electromagnetic Spectrum

Wavelength

Describing Electromagnetic Waves

wavelength (λ) – The length of one wavefrequency (v) – The number of waves per second

1 wave/second = 1 hertz (Hz)

10,000 Hz

10,000/s

 $10,000 \, s^{-1}$

Describing Electromagnetic Waves, Continued

wavelength frequency inversely related

$$C = \lambda V$$
speed of light = wavelength x frequency
$$\frac{m}{s} = m \times \frac{1}{s}$$

 $c = speed of light = 3.00 \times 10^8 \text{ m/s}$

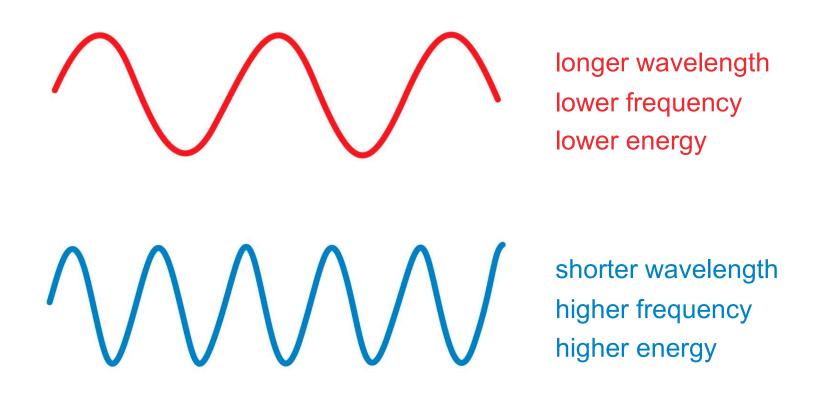
Example of Describing Electromagnetic Waves

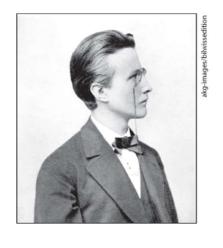
A beam of green light has a wavelength of 500 nm. What is the frequency of this light?

$$c = \lambda v$$

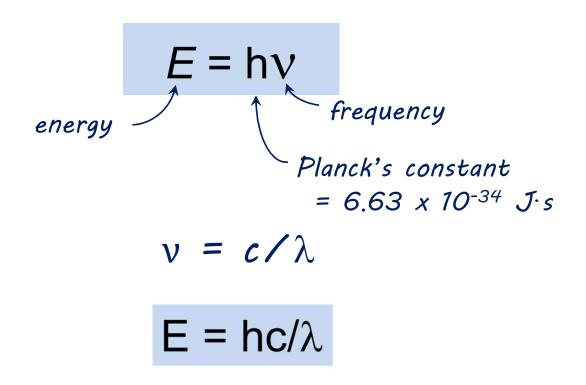
$$c = 3.00 \times 10^8 \text{ m/s}$$

 $\lambda = 500 \text{ nm} = 500 \times 10^{-9} \text{ m}$
 $1 \text{ nm} = 10^{-9} \text{ m}$
 $v = ?$


$$\frac{c}{\lambda} = v$$


$$\frac{3.00 \times 10^8 \text{ m/s}}{500 \times 10^{-9} \text{ m}} = v$$
units: $1/s = Hz$

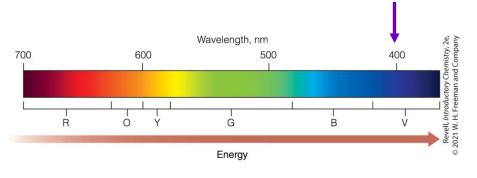
$$6 \times 10^{14} \text{ Hz} = V$$


Frequency and Wavelength

The energy of light depends on its frequency and wavelength.

Energy of a photon:

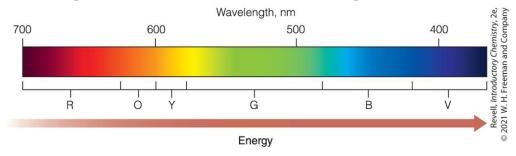
Example of Photon Energy


A photon has a frequency of 7.50×10^{14} Hz. What is the wavelength of this light? What color is this light? What is the energy of the photon?

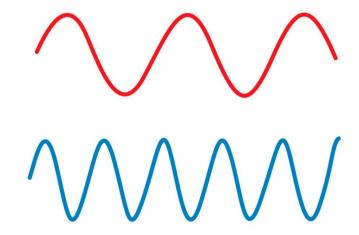
$$c = \lambda v$$

$$\frac{c}{v} = \lambda$$

$$\frac{3.00 \times 10^8 \text{ m/s}}{7.50 \times 10^{14}/\text{s}} = \lambda$$


$$4.00 \times 10^{-7} \, m = \lambda$$

= 400 nm violet

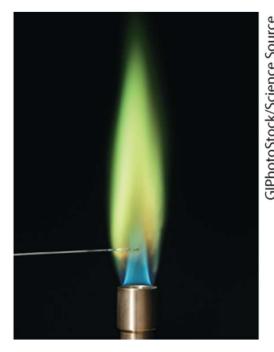

$$E = hv$$

$$E = (6.63 \times 10^{-34} \text{ J/s})(7.50 \times 10^{14}/\text{s})$$

 $E = 4.97 \times 10^{-19} \text{ J}$

Summary of Electromagnetic Waves

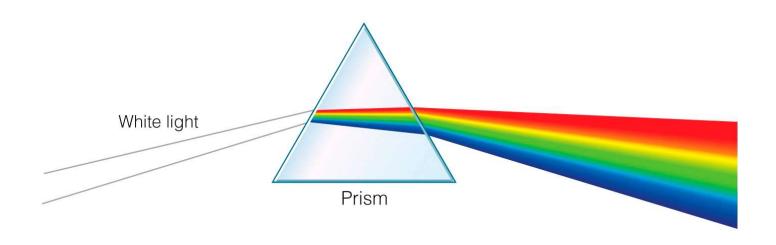
- Light is a form of electromagnetic radiation
- We describe light by its
 - frequency (v)
 - wavelength (λ)
 - energy (E)
- $c = \lambda v$
- $E = hv = hc/\lambda$


Color, Line Spectra, and the Bohr Model

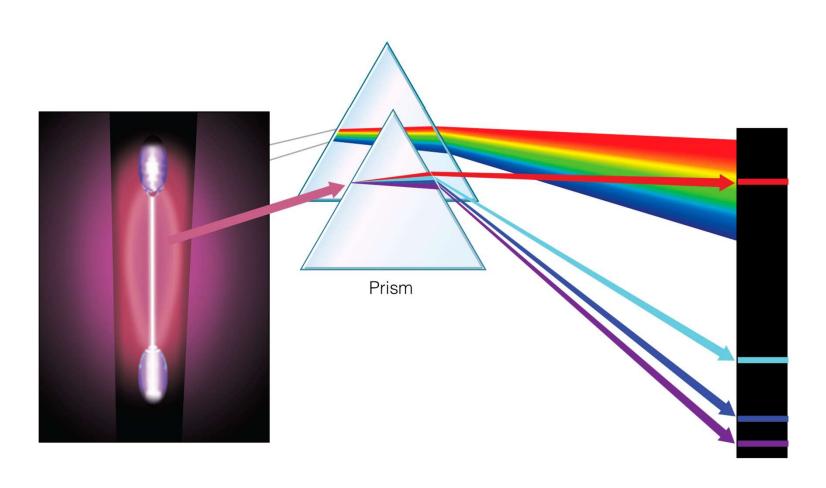
Flame Tests

observe colors emitted by different metal ions

GIPhotoStock/Science Source GIPhotoStock/Science Source

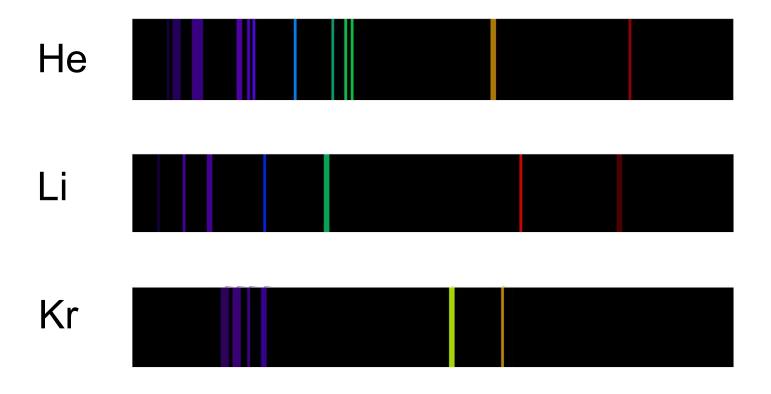

Photo credits: GIPhotoStock/Science Source

Gas lamps also produce unique colors:



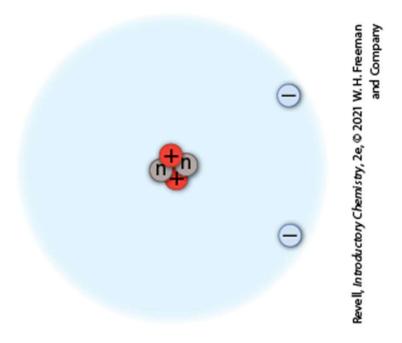
© 2005 Richard Megna/Fundamental Photographs, NYC

Line Spectra

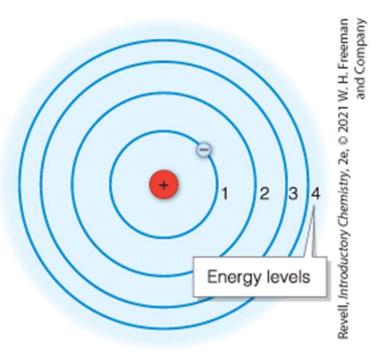


Line Spectra, Continued

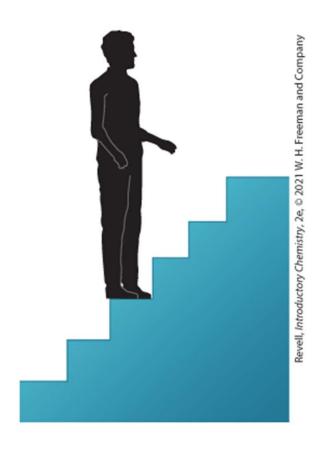
Examples of Line Spectra

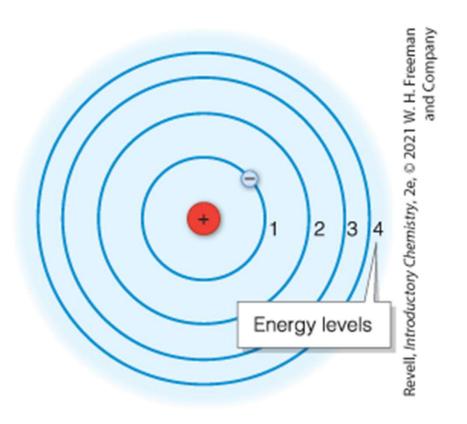

Each element produces a unique line spectrum.

Photoelectric Effect

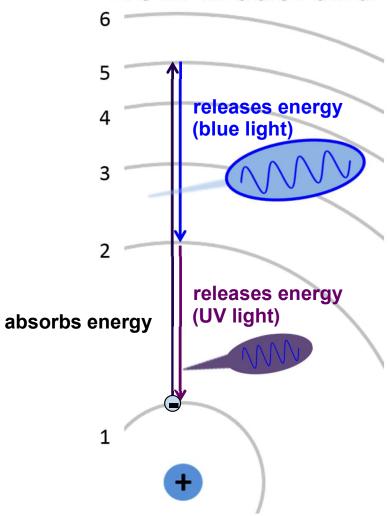

Early 20th Century:

- Dense nucleus surrounded by electrons
- Photoelectric effect: light causes atoms to eject electrons

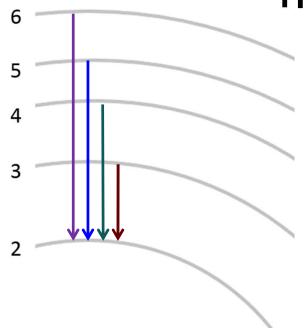



The Bohr Model (1913)

- Electrons orbit the nucleus.
- Only certain orbit energies are "allowed".
- Electrons can jump between levels.
- Light is absorbed or released when electrons jump.
- Ground state: all electrons in lowest possible levels.



The Bohr Model, Continued



Bohr Model and Line Spectra

The Hydrogen Atom

TABLE 4.1 Transition in the Hydrogen Line Spectrum

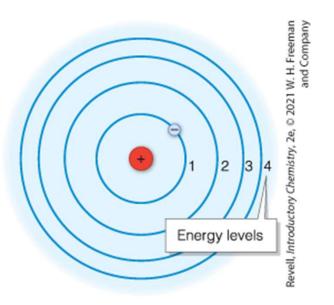
Transition	Color Produced
$3 \rightarrow 2$	Red
$4 \rightarrow 2$	Light blue
$5 \rightarrow 2$	Indigo (deep blue)
6 → 2	Purple(violet)

Light and Electrons

Sources of Light

Do You Give Off Light?

Monty Rakusen/Getty Images

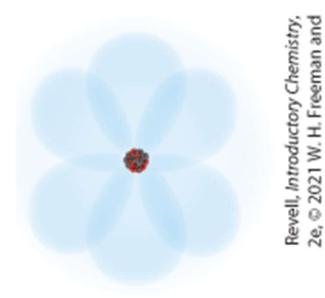

Summary of the Bohr Model

Explained

- The hydrogen line spectrum
- Some properties of main group elements

Did not explain

- More complex line spectra
- Properties of the transition elements



The Quantum Model and Electron Orbitals

Bohr Model: 1913

Eueral Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

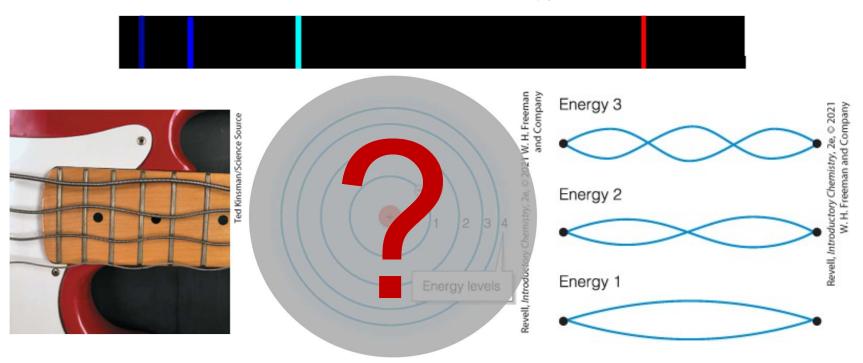
Quantum Model: 1920s-30s

Company

Heisenberg's Uncertainty Principle

It is impossible to precisely know the exact velocity and location of a particle.

We describe the <u>shape</u> the blades occupy.

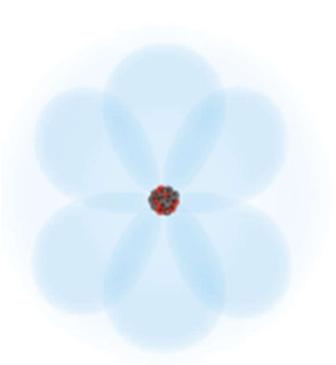

most probable locations energies

Quantum mechanics: describes electrons

The wave nature of electrons

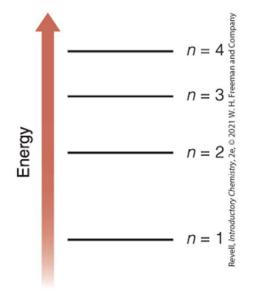
Tiny, fast-moving particles also behave as waves.

This explains electron energy levels.


The Quantum Model

Main Ideas:

- uncertainty principle
- wave nature of electrons

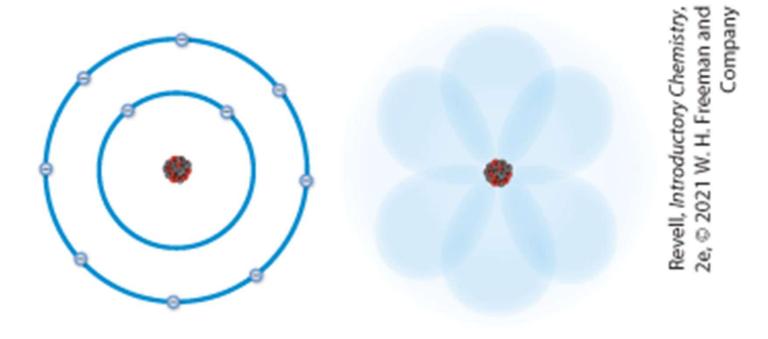

QM describes electrons by

- energy
- probable locations

Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and

- 1. Electrons occupy different energy levels.
 - Level is identified by its **principal quantum number**, *n* (1, 2, 3...)
 - Higher energy levels can hold more electrons

Level	Electron Capacity
1	2
2	8
3	18
4	32


2. Each energy level contains one or more **sublevels**.

Sublevel	
S	
p	
d	
f	

3. Each sublevel contains one or more orbitals.

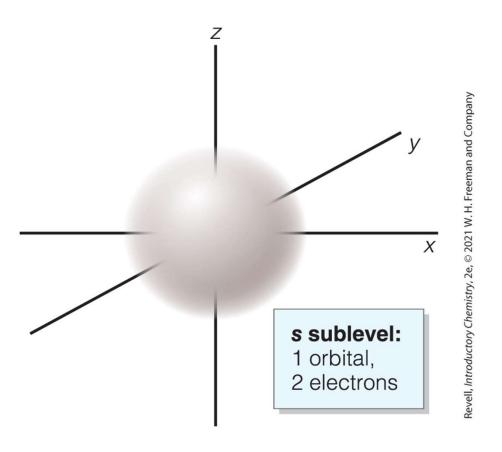
Sublevel	Number of Orbitals
S	1
p	3
d	5
f	7

The Bohr Model and the Quantum Model

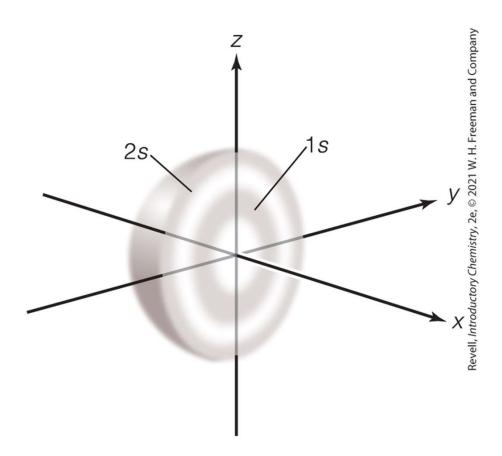
Bohr model Electrons orbit like planets

Quantum modelElectrons behave like waves that occupy different regions

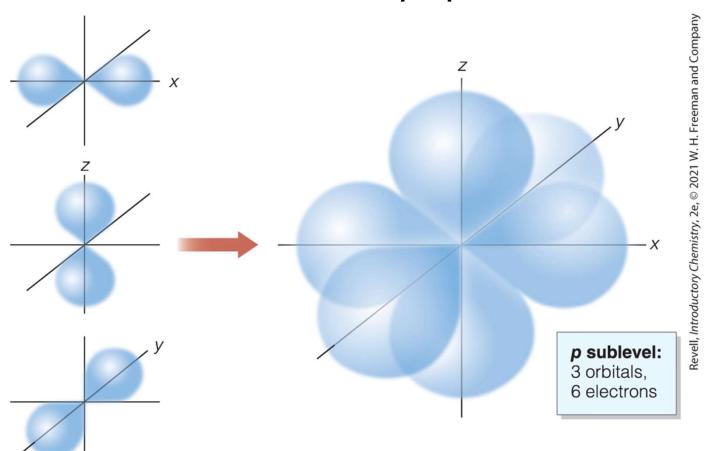
- 4. Each orbital holds up to two electrons.
 - Electrons have a magnetic field, called spin.
 - Electrons with opposite spins pair together.



Energy Levels and Sublevels, Summary

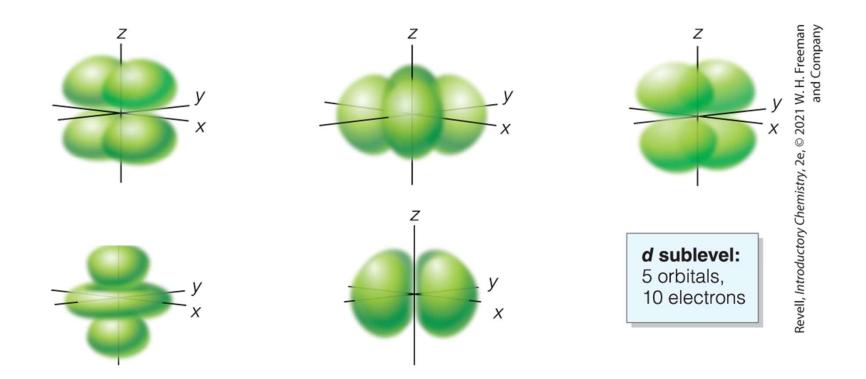

- 1. Electrons occupy different energy levels.
- 2. Each level contains sublevels.
- 3. Each sublevel contains orbitals.
- 4. Each orbital holds up to two electrons.

Sublevel	Number of Orbitals	Electron Capacity
S	1	2
p	3	6
d	5	10
f	7	14


Level 1: s only

Level 2: s + p, part 1

Level 2: s + p, part 2

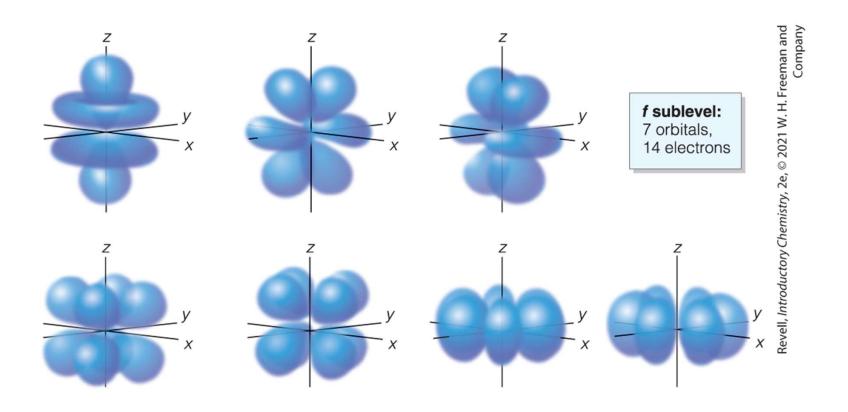


Level 2: s + p, part 3

Sublevel	Number of Orbitals	Electron Capacity
S	1	2
p	3	6

Total: 8

Level 3: s + p + d, part 1



Level 3: s + p + d, part 2

Sublevel	Number of Orbitals	Electron Capacity
S	1	2
p	3	6
d	5	10

Total: 18

Level 4: s + p + d + f, part 1

Level 4: s + p + d + f, part 2

Sublevel	Number of Orbitals	Electron Capacity
S	1	2
p	3	6
d	5	10
f	7	14

Total: 32

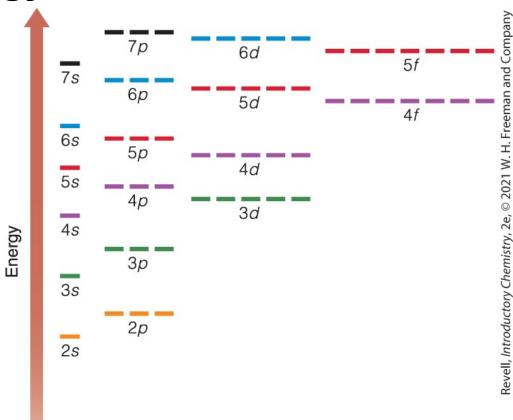
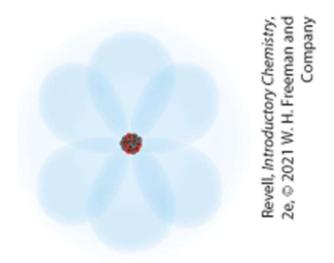

Summary of Atomic Energy Levels

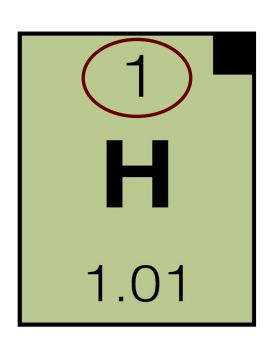
TABLE 4.4 Energy Levels, Sublevels, and Electron Capacity

Energy Level	1	2	3	4
				f (14 e ⁻)
Sublevels			<i>d</i> (10 e ⁻)	<i>d</i> (10 e ⁻)
		p (6 e ⁻)	p (6 e ⁻)	p (6 e ⁻)
	s (2 e ⁻)	s (2 e ⁻)	s (2 e ⁻)	s (2 e ⁻)
Electron Capacity	2	8	18	32

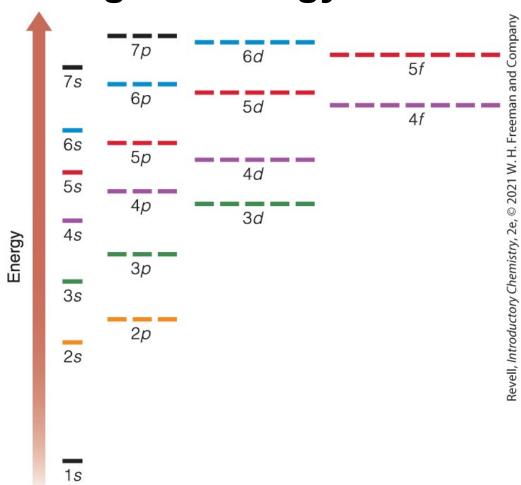
Note: the symbol e^- means electron.

Energy Differences Between Levels

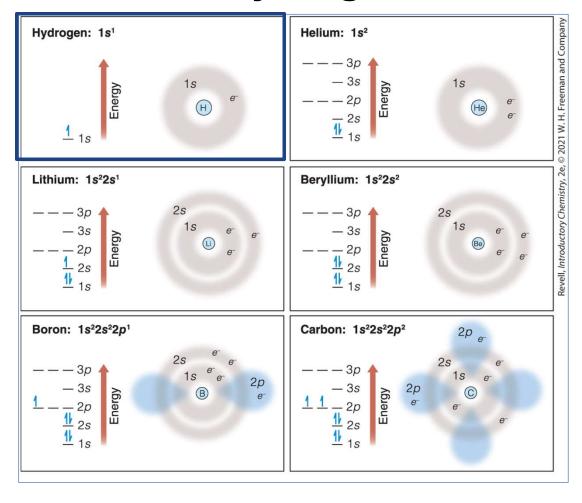

1*s*

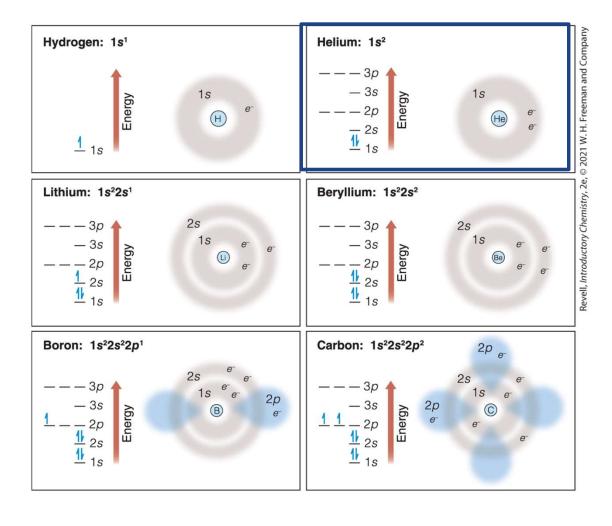

Describing Electron Configuration

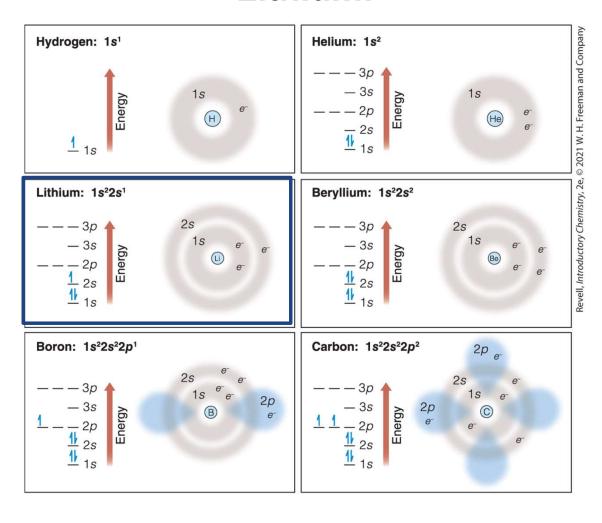
Quantum Model:

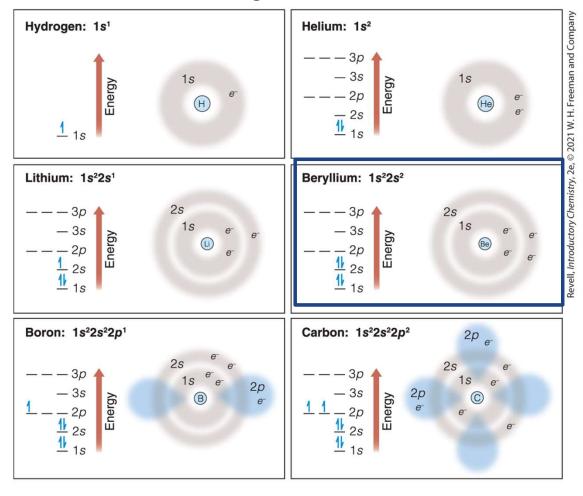

Energy levels – 1, 2, 3...

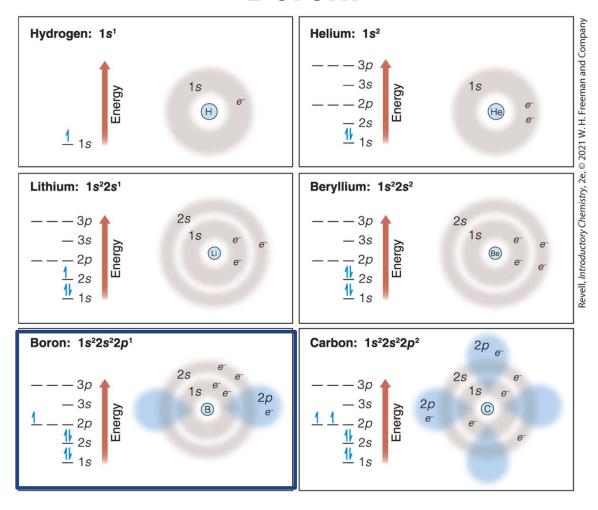
Energy sublevels -s, p, d, f



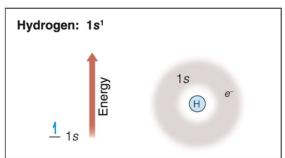

Filling the Energy Levels

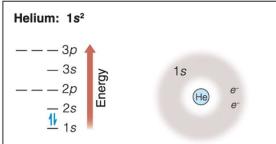

Hydrogen:

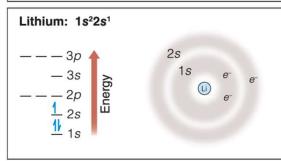

Helium:

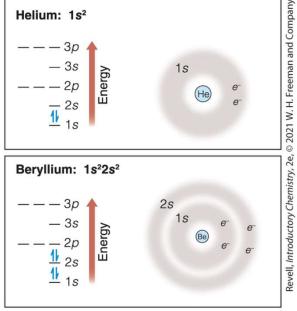

Lithium:

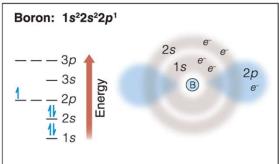
Beryllium:

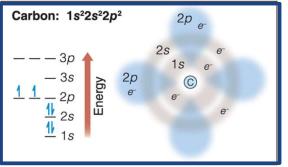

Boron:

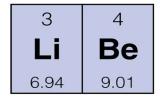



Hund's Rule:


If empty orbitals of the same energy are available, electrons singly occupy orbitals rather than pairing together.


Carbon:





Electron Configurations of Row 2 Elements

Li: 1s²2s¹

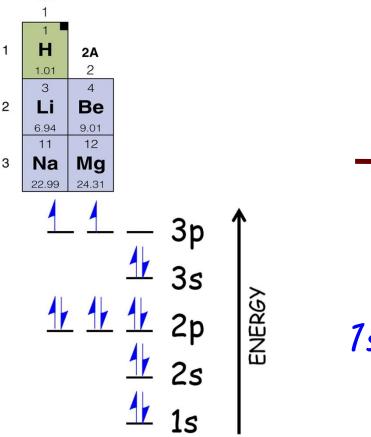
Be: 15²25²

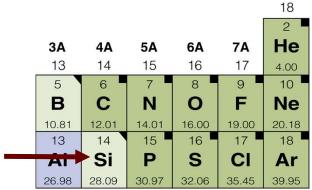
8	5	6	7	9	10	
	В	C	N	0	F	Ne
	10.81	12.01	14.01	16.00	19.00	20.18

 $B: 1s^2 2s^2 2p^1$

C: 1s²2s²2p²

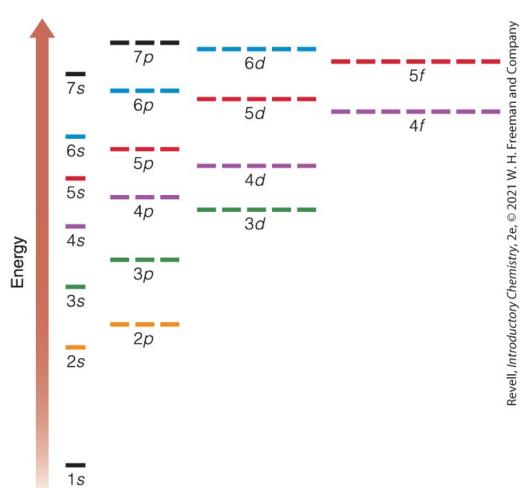
 $N: 1s^2 2s^2 2p^3$


 $0: 1s^2 2s^2 2p^4$

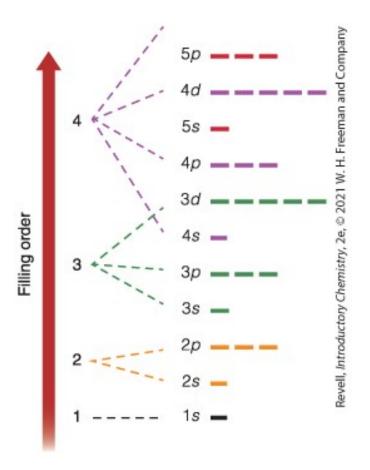

 $F: 1s^2 2s^2 2p^5$

Ne: 1s²2s²2p⁶

Example for Silicon

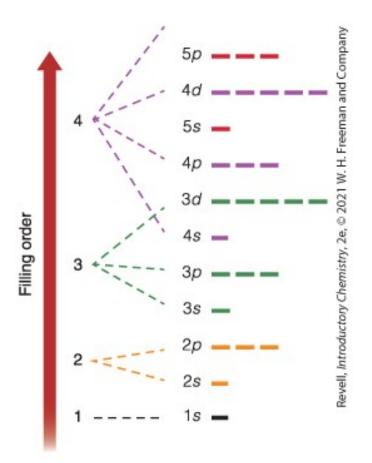

What is the electron configuration of silicon?

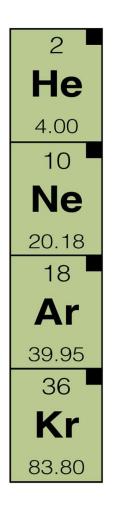
$$\frac{14 e^{-} total}{1s^{2}2s^{2}2p^{6}3s^{2}3p^{2}}$$


Energy Diagram and Writing Electron Configurations

Describing Electron Configuration, Part 2

valence level: The highest occupied electron energy level


Up to 8 electrons in valence level


Describing Electron Configurations, Part 3

Argon: (18 e⁻)

Potassium: (19 e⁻)

Noble Gases have Filled Valences

$1s^22s^22p^63s^23p^6$

$$1s^22s^22p^63s^23p^64s^23d^{10}4p^6$$

Octet Rule:

An atom is stabilized by having its highest-occupied (valence) energy level filled.

Electron Configurations for Larger Atoms

inner electrons

Noble gas notation

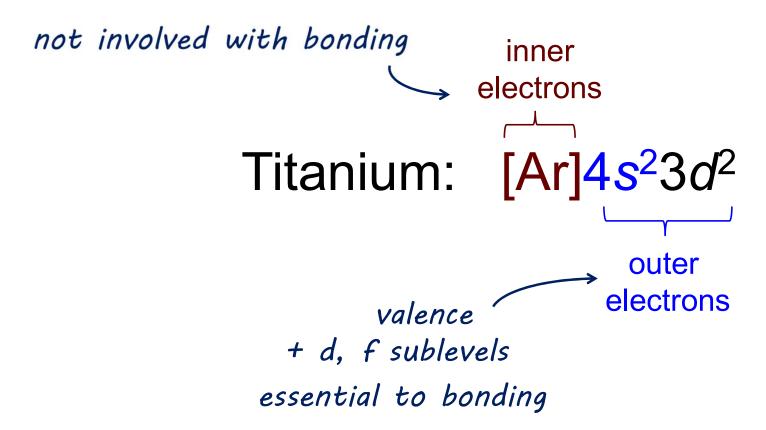
Sodium:

 $1s^22s^22p^63s^1$

[Ne]3s1

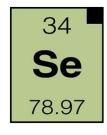
Phosphorous: $1s^2 2s^2 2p^6 3s^2 3p^3$

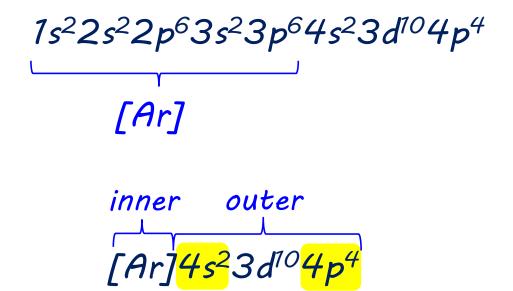
 $[Ne]3s^23p^3$

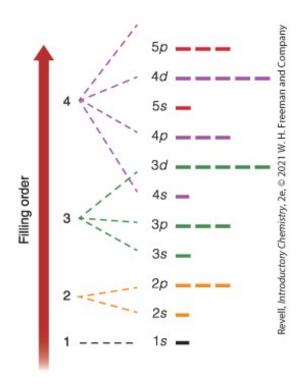

Chlorine:

 $1s^22s^22p^63s^23p^5$

 $[Ne]3s^23p^5$


$$1s^22s^22p^6 = [Ne]$$


Electron Configurations for Larger Atoms, Continued


Example of Writing an Electron Configuration

Write the electron configuration for selenium using the noble gas shorthand. Identify the inner electrons, the outer electrons, and the valence electrons.

valence

Example, Electron Configuration for Ions - Sodium

11 **Na** 22.99

What is the electron configuration of a sodium atom?

What is the electron configuration of a sodium ion with a +1 charge?

species	Symbol	full configuration	noble-gas shorthand		
sodium atom	Na	1s ² 2s ² 2p ⁶ 3s ¹	[Ne]3s1		
sodium ion (+1 charge)	Na ⁺	1s ² 2s ² 2p ⁶	[He]2s ² 2p ⁶ or [Ne]		

Example, Electron Configuration for Ions - Oxygen

8 **O** 16.00

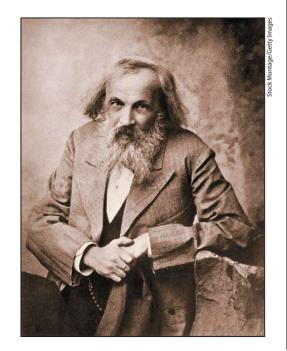
What is the electron configuration of an oxide ion, which is an oxygen ion with a charge of -2?

species	symbol	full configuration	noble-gas shorthand
oxygen atom	0	1s ² 2s ² 2p ⁴	[He]2s ² 2p ⁴
oxide ion (–2 charge)	O ²⁻	$1s^22s^22p^6$	[He] $2s^22p^6$ or [Ne]

Many ions form noble gas configurations

O: $1s^22s^22p^4$ Na: $1s^22s^22p^63s^1$

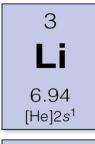
O²⁻: $1s^22s^22p^6$ Na⁺: $1s^22s^22p^6$


Ne: $1s^22s^22p^6$

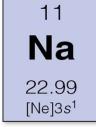
These are isoelectronic

Electron Configuration

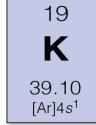
and the


Periodic Table

3	2	1	ЕРИО		ппы	I CN	MEH		элементов	
Ĭ,	PAUD	I	II	Ш	IV	v	VI	VII	VIII	0
1	T	H 1								He 2
1	-	1,008 .								4,003
2	I	Li 3	Be 4	5 B	6 C	7 N	8 O	9 F		Ne 10 20,183 1
3	н	Na 11	Mg 12	13 Al	14 Si	15 p	16 S	17 C1		Ar 18
v	_	22,997	24,32	26,97	28,06	30,98	32,06	35,457		39,944
	IX	K 19	Ca 20	Se 24	Ti 22	V 23	Cr 24	Mn 25	Fe 26 Co 27 Ni 28	
4	-	39,096 ;	40,00 ;	45.10 :	47,90 ;	50,95	52,01	54,93	55,85 58,94 58,69	-
*	Y	63,57	55,38	, Ga	32 Ge 72,60		34 Se	35 Br 79,916		Kr 36
	VI	Rb 37;	Sr 30 :	Y 39	Zr 40	Nh 41		Ma 43	Ru 44 Rh 45 Pd 48	03.7
5	п	85,48	87,63	88,92	91,22	92,91	95,95	- 1	101,7 102,91 106,7	
9	yn	47 Ag	48 Cd	49 In	4 50 Sn	, 51 Sb	4 52 Te	, 53 J	Thomas Hook	Xe 54
	***	1 107,88	1 112,41	114,76	118,70	1 121,76	17	14		131,3
- 1	VIII		Ba 56	La 37	Hf 72 #	Ta 73 :	W 74	Re 75 4	Os 76 4 Ir 77 4 Pt 76	
6		132,91 1	-		178,6	180,88	183,92	186,31	190,2 193,1 195,23	1
	И	au Au	5	₫* T1	103 PP		Po	. 05		Rn 86
-	_	197,2	200,61		207.21			1		222
7	X	- 6	- 1	Ac ***	Th 23212	Pa 912	U 92.			
-	_		220,03 1	227 1		HTAHH		-71		
		1	Ce 58;	Pr 50 :	Nd 80:	61,	Sm 62	_	lo c tc l	
					14427	- 4		Eu 63	Gd 64	
			Tb 65	Dy *4	Ho 67	Fr 68 ;	Tu 69	YЪ 70	Cp 71,	
				162,46	16494	167,2		173,04	174.99	


Group 1A Electron Configurations

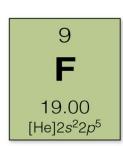
Lithium [He]2s1 (3 electrons):

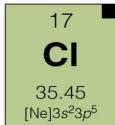


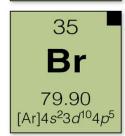
Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company Left top and middle: SPL/Science Source; bottom: Andrew Lamber Photography/Science Source; right: Philip Evans/Getty Images

Sodium [Ne]3s1 (11 electrons):

Potassium (19 electrons):

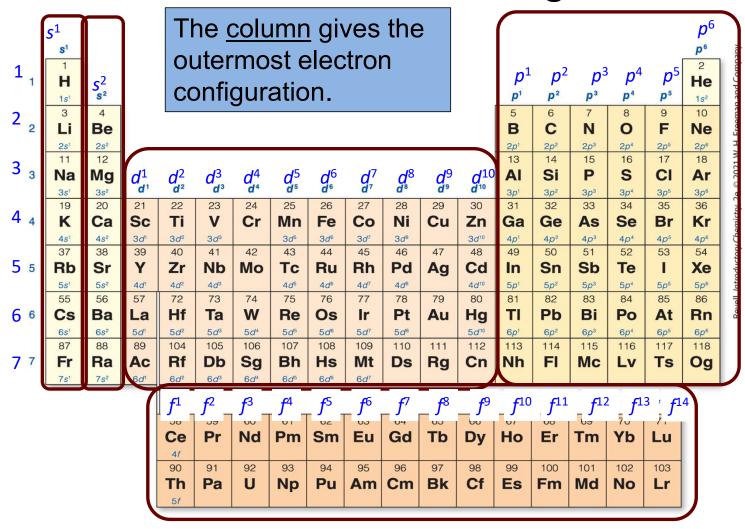

[Ar]4s1

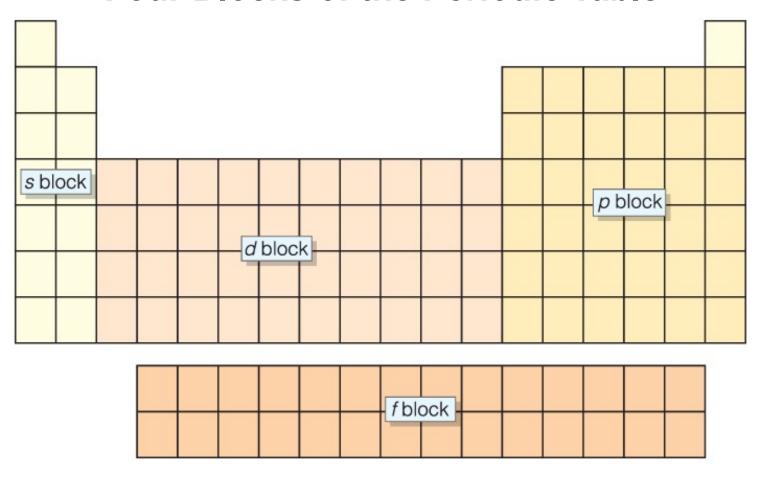

Group 7A Electron Configurations


Fluorine: [He]2s²2p⁵

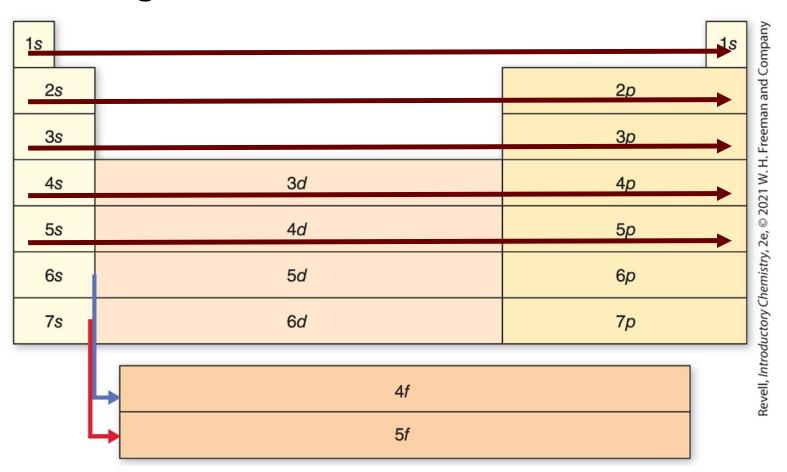
Chlorine: [Ne]3s²3p⁵

Bromine: $[Ar]4s^23d^{10}4p^5$

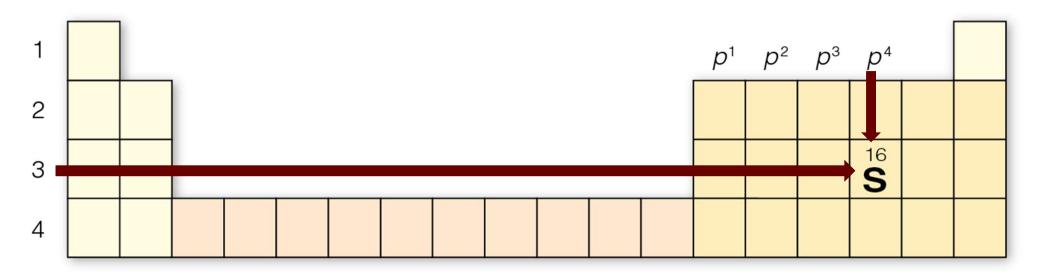



Row and Energy Level

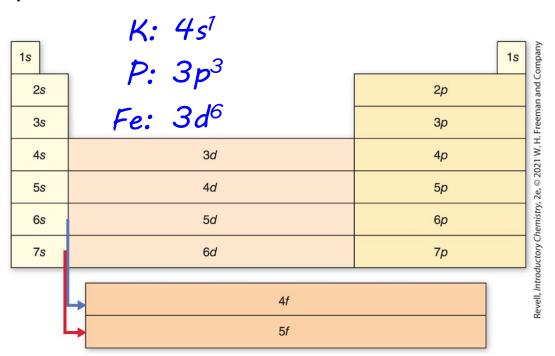
	S ¹																	p ⁶	'n
1	1 H 1s1	S ²					<u>v</u> in			the		p ¹	p²	p³	p ⁴	p ⁵	2 He	and Company	
2	3 Li 2s1	4 Be 2s ²			highest occupied electron energy level.									6 C 2p ²	7 N 2p ³	8 O 2p ⁴	9 F 2p ⁵	10 Ne 2p ⁶	Revell, Introductory Chemistry, 2e, © 2021 W. H. Freems
3	Na 3s1	Mg 3s ²	d¹	d²	d³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰	AI 3p1	Si 3p ²	P 3p ³	S 3p4	CI 3p5	Ar 3p ⁶	e, © 2021
4	19 K	20 Ca	21 Sc 3 <i>d</i> ¹	22 Ti	23 V 3 <i>d</i> ³	Cr	25 Mn	26 Fe	27 Co	28 Ni 3 <i>d</i> ⁸	29 Cu	30 Zn	31 Ga	Ge	33 As	34 Se	35 Br	36 Kr	hemistry, 2
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	4p ⁶ 54 Xe	oductory C
6	5s1 55 Cs	5 <i>s</i> ² 56 Ba	4d¹ 57 La	4d ² 72 Hf	4 <i>d</i> ³ 73 Ta	74 W	75 Re	4d ⁶ 76 Os	4d ⁷ 77 Ir	78 Pt	79 Au	80 Hg	5p ¹ 81	5 <i>p</i> ² 82 Pb	5 <i>p</i> ³ 83 Bi	5 <i>p</i> ⁴ 84 Po	5p ⁵ 85 At	5p ⁶ 86 Rn	Revell, Intro
Ü	6s ¹	6 <i>s</i> ²	5 <i>d</i> ¹ 89	5 <i>d</i> ²	5 <i>d</i> ³	5 <i>d</i> ⁴	5 <i>d</i> ⁵	5 <i>d</i> ⁶	5 <i>d</i> ⁷	5 <i>d</i> ⁸	111	5 <i>d</i> ¹⁰	6p ¹	6p ²	6p ³	6p ⁴	6p ⁵	6p ⁶	
7	Fr 7 <i>s</i> ¹	Ra 7 <i>s</i> ²	Ac 6d1	Rf 6d ²	Db 6d³	Sg 6d ⁴	Bh 6 <i>d</i> ⁵	Hs 6d ⁶	Mt 6 <i>d</i> ⁷	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og	
				f ¹ 58	f ² 59	f ³	f ⁴ 61	f ⁵	f ⁶	f ⁷	f ⁸	f ⁹	f ¹⁰ 67	f ¹¹ 68	f ¹²	f ¹³	f ¹⁴		
				Ce 4f 90	Pr 91	Nd	Pm	Sm 94	Eu 95	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
				90 Th 5 <i>f</i>	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		


Column and Electron Configuration

Four Blocks of the Periodic Table

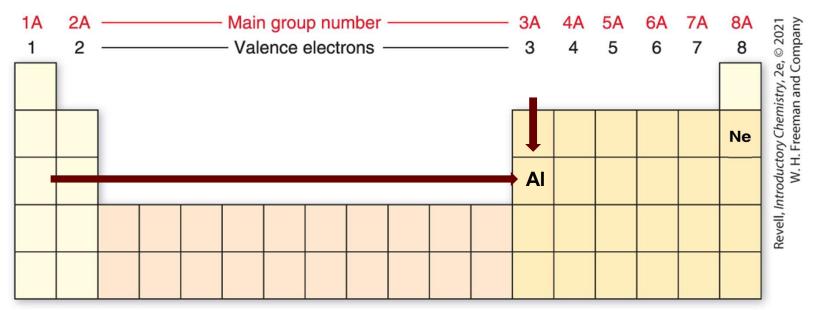


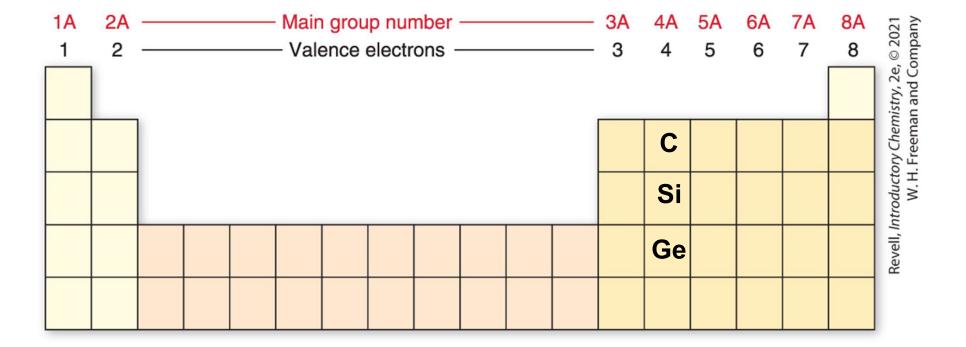
Organization of the Periodic Table


Sulfur Electron Configuration

What is the outermost electron configuration for sulfur?

Highest-Energy Occupied Sublevel


Write the configuration for the highest-energy occupied sublevel for potassium, phosphorus, and iron.

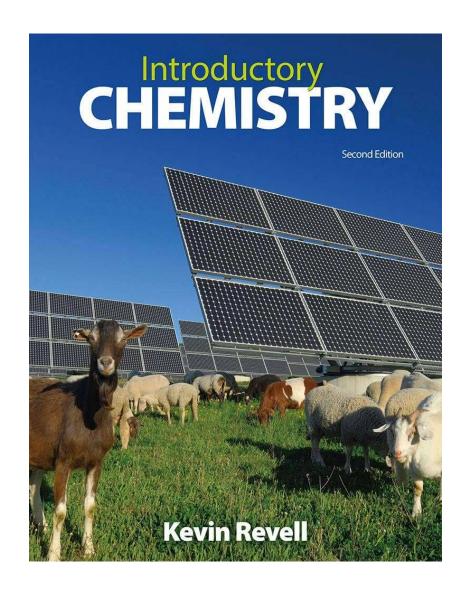

Electron Configuration of Aluminum Write the electron configuration for aluminum.

How many valence electrons does aluminum have?

[Ne]3s²3p¹
3 valence electrons

Valence Electrons

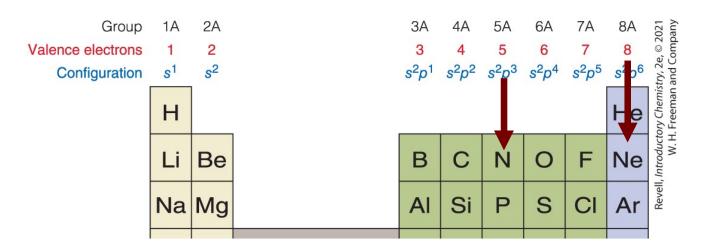
Summary of Periodic Table Organization


The <u>row</u> indicates the highest occupied electron energy level.

				T	he	<u>CO</u>	lur	<u>nn</u>	gi	ve	S							
	S1			4h		~4	- ~ ~	~~~	\t									p ⁶
	1			LH	10 (Jui	teri		SL									2
1	Н			_ [1									2	4		He
	1s1	S ²	1	e	ec	tro	n						p ¹	p²	p ³	p⁴	p ⁵	1 <i>s</i> ²
0	3	4				_		_					5	6	7	8	9	10
2	Li	Ве		CO	าทf	ini	ıra	ti∩	n				В	С	N	0	F	Ne
	2s¹	2s ²			JI 11	191	ла	uo					2p ¹	2p ²	2p ³	2p4 16	2p ⁵	2p ⁶
3	Na	Mg											AI	Si	P	S	CI	Ar
- 1	3s1	3s ²	d¹	d^2	d ³	d ⁴	d ⁵	d ⁶	d^7	d ⁸	d9	d 10	3p1	3p ²	3p3	3p4	3p5	3p ⁶
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	4s1	4s ²	3 <i>d</i> 1	3 <i>d</i> ²	3 <i>d</i> ³		3d ⁵	3d ⁶	3 <i>d</i> ⁷	3d ⁸		3d10	4p1	4p2	4p3	4p4	4p ⁵	4p ⁶
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	- 1	Xe
	5s1	5 <i>s</i> ²	4d1	4ď ²	4d³		4d ⁵	4d ⁶	4d ⁷	4d8		4d ¹⁰	5p1	5p ²	5p ³	5p4	5p ⁵	5p ⁶
70	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	6s1	6s ²	5d1	5d2	5d3	5d4	5d ⁵	5d6	5 <i>d</i> ⁷	5d8	444	5d10	6p1	6p²	6p ³	6p4	6p ⁵	6p ⁶
7	87	88	89	104	105	106	107 Db	108	109	110	111	112	113	114	115	116	117	118
/	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	7 <i>s</i> ¹	7 <i>s</i> ²	6 <i>d</i> ¹	6 <i>d</i> ²	6 <i>d</i> ³	6 <i>d</i> ⁴	6 <i>d</i> ⁵	6 <i>d</i> ⁶	6 <i>d</i> ⁷			10			100			
				f1	f ²	f ³	f ⁴	f5	f ⁶	f ⁷	f ⁸	f ⁹	f ¹⁰	f ¹¹	f 12	f13	f 14	
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
				4 <i>f</i>														
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				5 <i>f</i>														

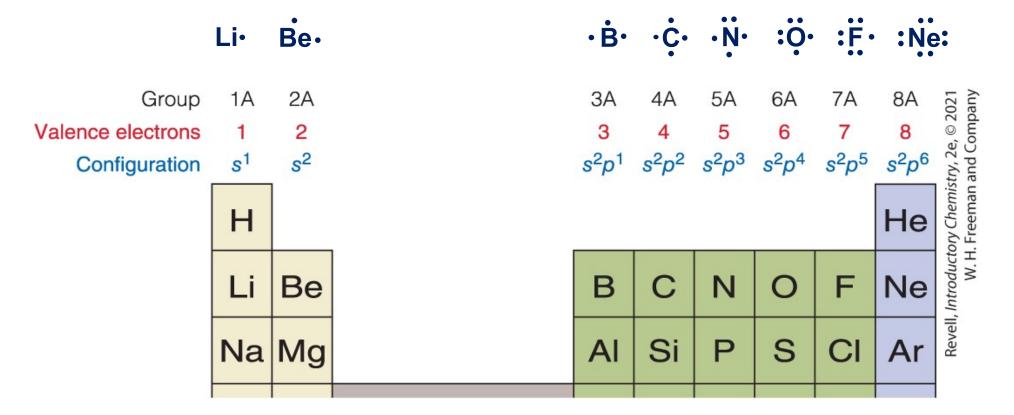
Introductory Chemistry Chem 103

Chapter 5 – Chemical Bonds and Compounds


Lecture Slides

Lewis Symbols and the Octet Rule

Valence electrons


- electrons in highest occupied energy level
- s and p sublevels
- generally up to 8 electrons

Lewis Symbols Show Valence Electrons

Lewis dot symbols

Represent valence electrons as dots around atomic symbol

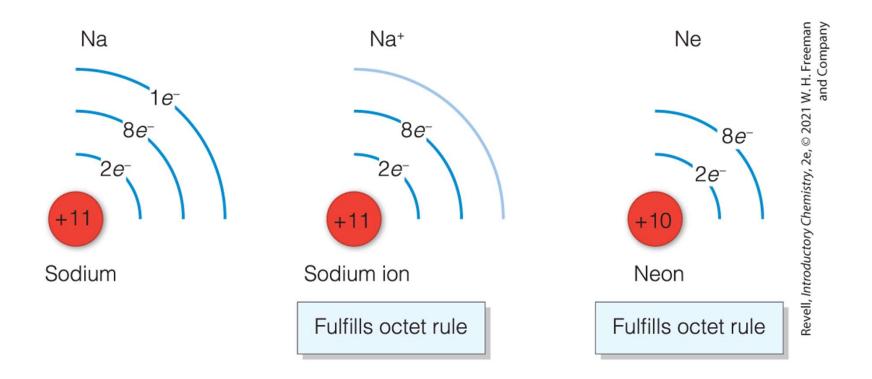
The Octet Rule

Octet Rule: An atom is stabilized by having its valence energy level filled.

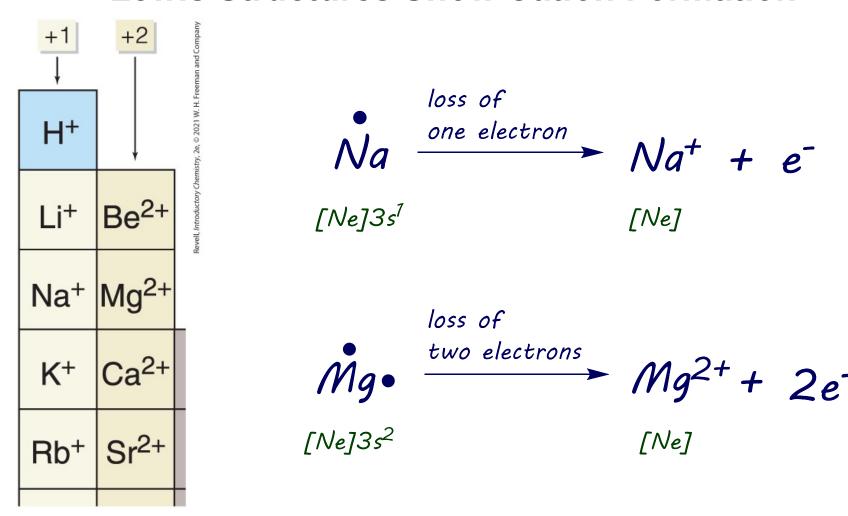
Noble gases fulfill the octet rule.

Other atoms fulfill the octet rule by:

- gaining or losing electrons (ions).
- sharing electrons.


lons

Atoms or groups of atoms that have an overall charge.


H+														
Li+	Be ²⁺										N ³⁻	O ²⁻	F	
Na ⁺	Mg ²⁺								Al ³⁺		P ³ -	S ²⁻	CI-	
K ⁺	Ca ²⁺		Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺					Br_	
Rb ⁺	Sr ²⁺						Ag ⁺			Sn ²⁺ Sn ⁴⁺			_	
										Pb ²⁺ Pb ⁴⁺				

Cations – positively charged ions

Main group metals fulfill the octet rule by forming cations

Lewis Structures Show Cation Formation

Transition metals also form cations.

Typical charges are +1, +2, +3, or +4

Some metals form multiple charged ions.

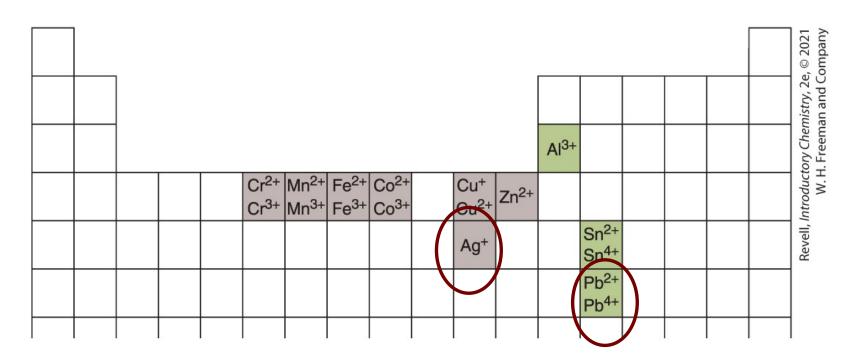
p-block metals also do this.

												© 2021 ompany
												ductory Chemistry, 2e, © 2021 W. H. Freeman and Company
								Al ³⁺				Revell, Introductory Chemistry, W. H. Freeman and
		Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺	Cu ⁺ Cu ²⁺	Zn ²⁺					Introduct W. F
						Ag+			Sn ²⁺ Sn ⁴⁺			Revell,
									Pb ²⁺ Pb ⁴⁺			
												1

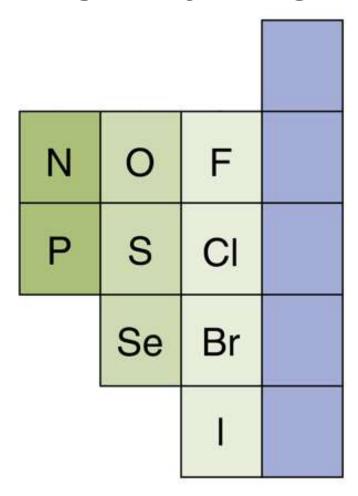
Naming Cations

Metal cations have the same name as the neutral metal.

Na⁺ sodium

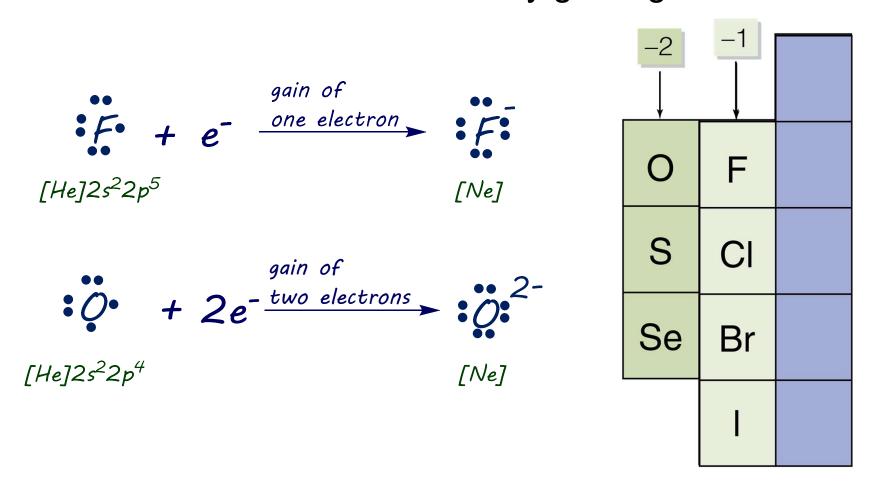

Mg²⁺ magnesium

Atom	lon	Older Name	Modern Name			
Iron	Fe ²⁺	ferrous	iron(II)			
Iron	Fe ³⁺	ferric	iron(III)			
Cannar	Cu⁺	cuprous	copper(I)			
Copper	Cu ²⁺	cupric	copper(II)			

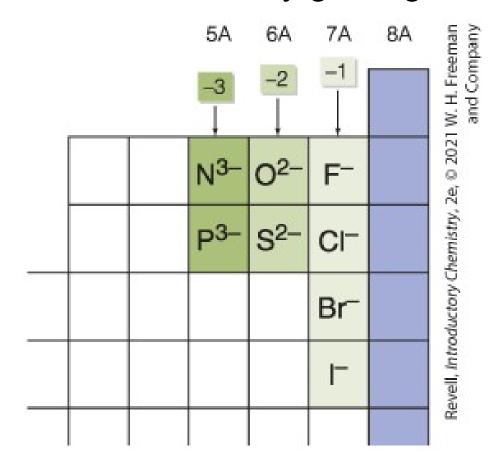

Practice Naming Cations

Name the following cations:

Ag⁺ Pb²⁺ Pb⁴⁺ silver lead(II) lead(IV)



Anions – negatively charged ions


Anions Fulfill the Octet Rule, Part 1

Most nonmetals fulfill the octet rule by gaining electrons.

Anions Fulfill the Octet Rule, Part 2

Most nonmetals fulfill the octet rule by gaining electrons.

Naming Anions: change ending to -ide

Atom	Anion Symbol	Anion Name
chlorine	CI-	chloride
oxygen	O ² -	oxide
sulfur	S ²⁻	sulfide
nitrogen	N ³ -	nitride

	NH ₄ + Ar	mmonium	
NO ₃ -	Nitrate	SO ₄ 2-	Sulfate
NO ₂ -	Nitrite	SO ₃ 2-	Sulfite
CO ₃ ²⁻	Carbonate	HSO ₄ -	Bisulfate
HCO ₃ -	Bicarbonate		(Hydrogen sulfate)
	(Hydrogen carbonate)	CIO ₄ -	Perchlorate
PO ₄ ³⁻	Phosphate	CIO ₃ -	Chlorate
HPO ₄ ²⁻	Hydrogen phosphate	CIO ₂ -	Chlorite
C ₂ H ₃ O ₂ ⁻	Acetate	CIO-	Hypochlorite
OH-	Hydroxide	CrO ₄ ²⁻	Chromate
CN-	Cyanide	Cr ₂ O ₇ ²⁻	Dichromate
O ₂ ²⁻	Peroxide	MnO ₄ -	Permanganate

Oxyanions – contain oxygen

Usually named as element root + -ate

CO₃²⁻ carbonate

PO₄³⁻ phosphate

More than one oxyanion:

```
-ate more oxygen atoms-ite fewer oxygen atoms
```

NO₃⁻ nitrate

NO₂⁻ nitrite

More than one oxyanion:

```
-ate more oxygen atoms
```

-ite fewer oxygen atoms

```
ClO<sub>4</sub> - perchlorate
```

ClO₃ - chlorate

ClO₂ - chlorite

CIO - hypochlorite

Ions to Know

H ⁺					Мо	natom	nic ato	ms							
Li+	Be ²⁺											N ³⁻	O ²⁻	F-	
Na ⁺	Mg ²⁺									Al ³⁺		P3-	S ²⁻	CI-	
K+	Ca ²⁺		Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺		Cu ⁺ Cu ²⁺	Zn ²⁺					Br-	
Rb+	Sr ²⁺							Ag+			Sn ²⁺ Sn ⁴⁺			-	
											Pb ²⁺ Pb ⁴⁺				

Polyatomic atoms

	NH ₄ + Ar	nmonium	
NO ₃ -	Nitrate	SO ₄ 2-	Sulfate
CO ₃ 2-	Carbonate	SO ₃ 2-	Sulfite
HCO ₃ ⁻	Bicarbonate (Hydrogen carbonate)	HSO ₄ ⁻	Bisulfate (Hydrogen sulfate)
NO ₂ -	Nitrite	CIO ₄ -	Perchlorate
PO ₄ 3-	Phosphate	CIO ₃ -	Chlorate
HPO ₄ ²⁻	Hydrogen phosphate	CIO ₂ -	Chlorite
C ₂ H ₃ O ₂ ⁻	Acetate	CIO-	Hypochlorite
OH-	Hydroxide	CrO ₄ ²⁻	Chromate
CN-	Cyanide	Cr ₂ O ₇ ²⁻	Dichromate
O ₂ ²⁻	Peroxide	MnO ₄ ⁻	Permanganate

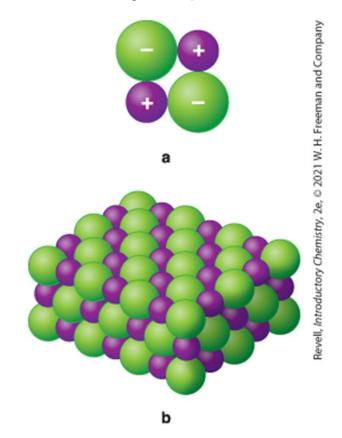
Ionic Bonds and Compounds

H ⁺					Мо	natom	nic ato	ms							
Li+	Be ²⁺											N ³⁻	O ²⁻	F ⁻	
Na ⁺	Mg ²⁺	2								Al ³⁺		P3-	S ²⁻	CI-	
K+	Ca ²⁺		Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺		Cu ⁺ Cu ²⁺	Zn ²⁺					Br-	
Rb+	Sr ²⁺							Ag ⁺			Sn ²⁺ Sn ⁴⁺			-	
											Pb ²⁺ Pb ⁴⁺				

Polyatomic atoms

NH ₄ ⁺ Ammonium												
NO ₃ -	Nitrate	SO ₄ ²⁻	Sulfate									
CO ₃ 2-	Carbonate	SO ₃ 2-	Sulfite									
HCO ₃ ⁻	Bicarbonate (Hydrogen carbonate)	HSO ₄ -	Bisulfate (Hydrogen sulfate)									
NO ₂ -	Nitrite	CIO ₄ -	Perchlorate									
PO ₄ 3-	Phosphate	CIO ₃ -	Chlorate									
HPO ₄ ²⁻	Hydrogen phosphate	CIO ₂ -	Chlorite									
C ₂ H ₃ O ₂ ⁻	Acetate	CIO-	Hypochlorite									
OH-	Hydroxide	CrO ₄ ²⁻	Chromate									
CN-	Cyanide	Cr ₂ O ₇ ²⁻	Dichromate									
O ₂ ²⁻	Peroxide	MnO ₄ ⁻	Permanganate									

Ionic Bonds and Compounds, Continued

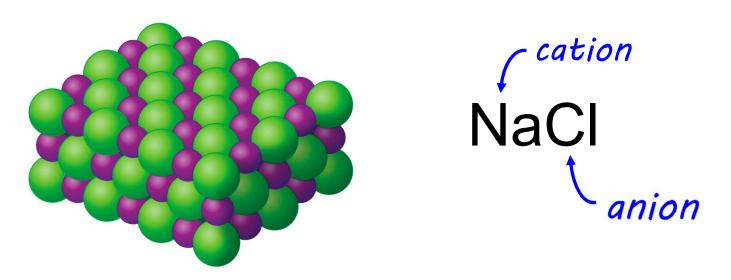


ionic bond – an attraction between oppositely charged ionsionic compound – composed of charged ions

Metal cations and nonmetal anions form ionic compounds.

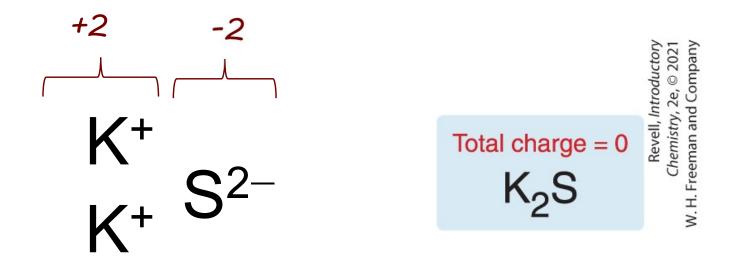
Ionic Compound Structure

ionic lattice – an array of positive and negative ions.



Chemical Formulas

Show the type and amount of each element present


Empirical formula: The smallest whole-number ratio of atoms

Formula unit: The smallest number of ions necessary to form a compound

Ionic Compounds

Write the formula for a compound composed of potassium and sulfide ions.

positive charges must equal the negative charges.

Compounds with Polyatomic Ions

Write the formula for a compound composed of calcium and nitrate ions.

positive charges must equal the negative charges.

Compounds with Polyatomic Ions, Continued

Write the formula for a compound composed of aluminum and sulfate ions.

Al³⁺
$$SO_4^{2-}$$
 Al_{3+} SO_4^{2-} Al_{3+} SO_4^{2-} SO_4^{2-} SO_4^{2-} SO_4^{2-}

positive charges must equal the negative charges.

Naming Ionic Compounds, Part 1

cation anion

NaCl sodium chloride

MgCl₂ magnesium chloride

MgSO₄ magnesium sulfate

Naming Ionic Compounds, Part 2

```
cation anion

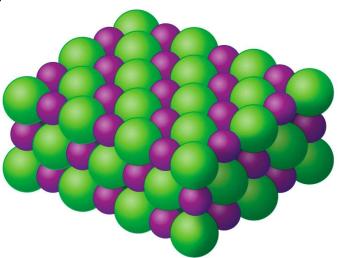
CuCl copper(I) chloride

CuCl<sub>2</sub> copper(II) chloride

CuCl_2 copper(II) chloride
```

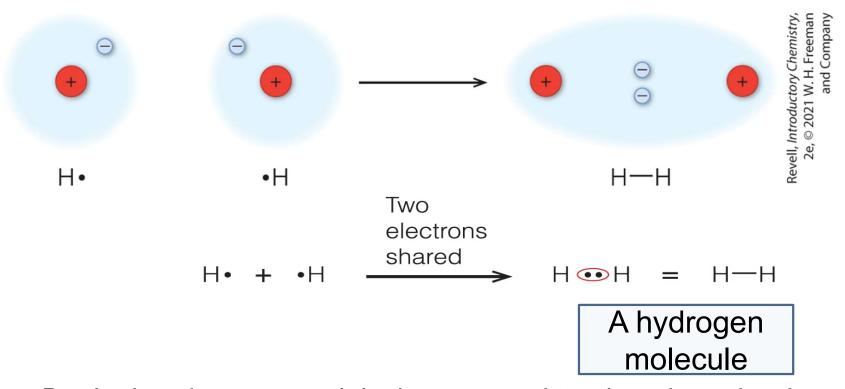
Example, Naming Ionic Compounds

1. Name the compound $Fe(NO_2)_2$.


$$Fe^{2+} \begin{cases} NO_2^- \\ NO_2^- \end{cases} iron(II) nitrite$$
iron(II)
nitrite

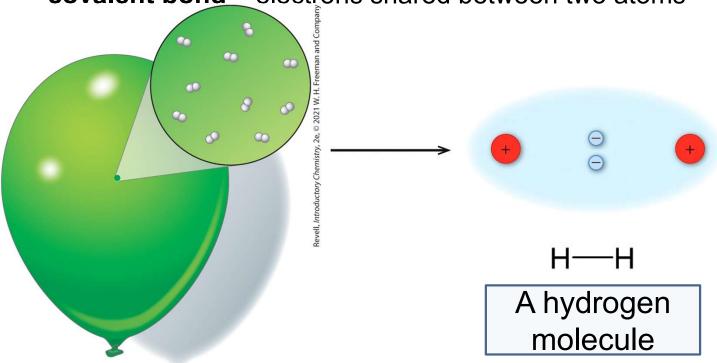
2. Write the empirical formula for ammonium sulfide.

$$NH_4^+$$
 52- $(NH_4)_25$ NH_4^+

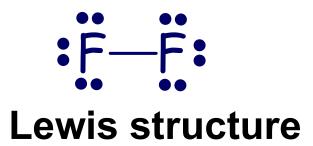

Summary, Ionic Compounds

- Ionic bonds occur between oppositely charged ions
- In ionic compounds, total charge = 0
- Named as "cation anion"
- Formula ⇔ Name

Covalent Bonding, Part 1


covalent bond - electrons shared between two atoms

By sharing electrons, each hydrogen completes its valence level.


Covalent Bonding, Part 2

covalent bond - electrons shared between two atoms

By sharing electrons, each hydrogen completes its valence level.

Covalent Bonding, Part 3

Seven Elements Form Diatomic Molecules

The Magnificent Seven

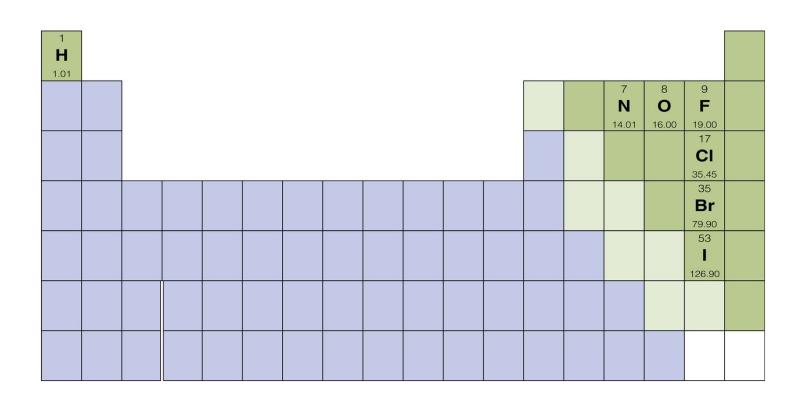
Elements that form Diatomic Molecules

Hydrogen: H₂

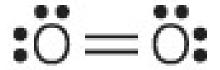
Nitrogen: N₂

Oxygen: O₂

Fluorine: F₂


Chlorine: Cl₂

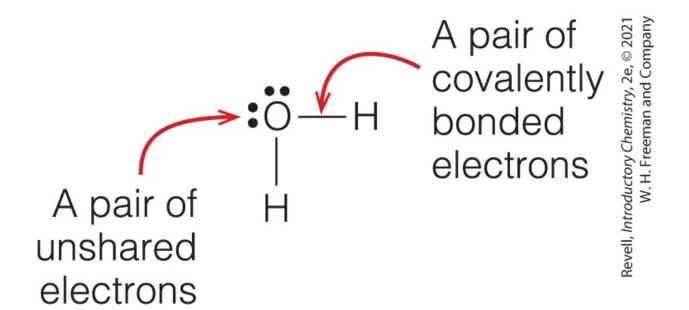
Bromine: Br₂


lodine: l2

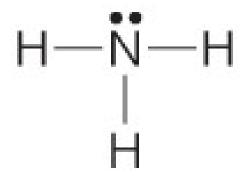
Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

Seven Elements Form Diatomic Molecules, Continued

Double and Triple Bonds in Lewis Structures


double covalent bond

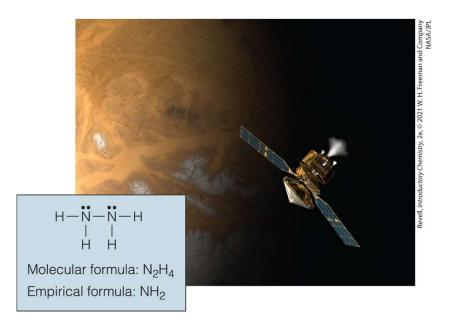
triple covalent bond


Covalent Compounds

Covalent compounds fulfill the octet rule by sharing electrons.

Electrons in Lewis Structures

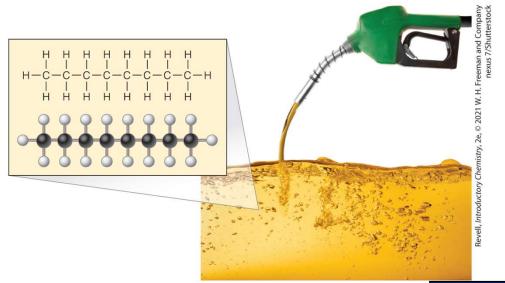
In this structure, how many electrons does the nitrogen atom share through covalent bonds? How many of the valence nitrogen electrons are not shared? Does this nitrogen atom have a complete octet?



Nitrogen has 6 shared electrons and 2 unshared electrons

8 electrons - a complete octet

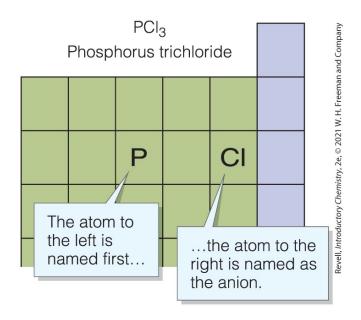
Covalent Compounds, Continued


molecular formula – gives the number of atoms in the molecule

Empirical Formula: NH₂

Molecular Formula: N₂H₄

Covalent Compound Structures


Covalent compounds often have complex structures.

Compound name	Formula
Phosphorus monoxide	РО
Diphosphorus trioxide	P_2O_3
Diphosphorus tetroxide	P_2O_4
Tetraphosphorus decoxide	P_4O_{10}

Naming Binary Covalent Compounds

Atoms	Prefix	
1	mono-*	
2	di-	
3	tri-	
4	tetra-	
5	penta-	
6	hexa-	
7	hepta-	
8	octa-	
9	nona-	
10	deca-	

PCl₃ phosphorus trichloride PCl₅ phosphorus pentachloride

^{*} omit for first element

Using Greek Prefixes

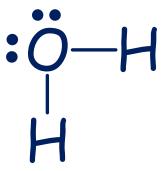
"pent" or "penta"

PCl₅ phosphorus pentachloride

P₂O₅ diphosphorus pentoxide

Remove "a" if anion begins with a vowel.

Practice Naming Covalent Compounds


Nitrogen and oxygen form two covalent compounds, NO_2 and N_2O_4 . Name each of these compounds.

NO₂ nitrogen dioxide

N₂O₄ dinitrogen tetroxide

Summary of Covalent Compounds

- In covalent bonds, atoms share electrons
- Covalent bonds form between nonmetals
- Most covalent compounds form discrete molecules
- We describe molecules using
 - Lewis structures
 - Molecular formulas
- Naming binary covalent compounds
 - Leftmost element first
 - Second element named as anion
 - Prefixes indicate the number of atoms present

Distinguishing Ionic and Covalent

To fulf Compositions

- gain or lose electrons (ions)
- share electrons (covalent bonds)

Covalent compounds

- share electrons
- between nonmetal atoms
- usually form molecules
- molecular formula

Ionic compounds

- oppositely-charged ions
- don't form molecules
- formula unit or empirical formula

```
Na<sup>+</sup> Cl<sup>-</sup> Na<sup>+</sup> Cl<sup>-</sup>
Cl<sup>-</sup> Na<sup>+</sup> Cl<sup>-</sup> Na<sup>+</sup>
```

Properties of Ionic and Covalent Compounds

Limestone (CaCO₃)

Olive Oil

Identifying and Naming Compounds

Covalent compounds

all nonmetals

lonic compounds

- metal + nonmetal
- contains polyatomic ions

Identify these compounds as ionic or covalent, and name each one:

 MgF_2

ionic magnesium fluoride

 $Fe(NO_3)_3$

ionic
iron(III) nitrate

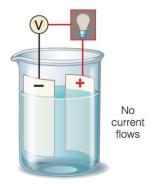
 P_2O_4

covalent diphosphorus tetroxide

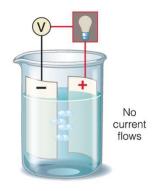
SCI₆

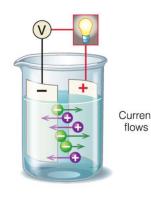
covalent sulfur hexachloride

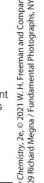
Aqueous Solutions:

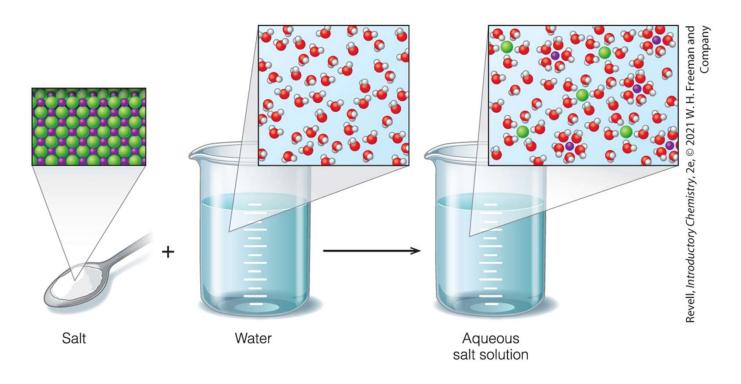

How Ionic and Covalent Compounds Differ

aqueous solution A homogeneous mixture, in which the main component is water


soluble Able to dissolve

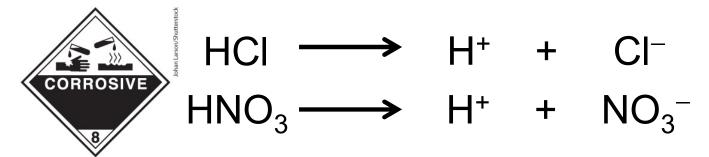

Electrolyte Solutions Conduct Electricity





b

С


а

dissociation lons are pulled apart in an aqueous solution

Acids

covalent compounds that produce H+ ions in aqueous solution

Common Acids

Formula	Name	Formula	Name
HF	hydrofluoric acid	HNO_3	nitric acid
HCI	hydrochloric acid	HNO_2	nitrous acid
HBr	hydrobromic acid	H ₂ SO ₄	sulfuric acid
HI	hydroiodic acid	H ₃ PO ₄	phosphoric acid
H_2CO_3	carbonic acid	$HC_2H_3O_2$	acetic acid

Binary Acids

HF hydrofluoric acid

HCI hydrochloric acid

HBr hydrobromic acid

HI hydroiodic acid

Oxyacids

form H⁺ and oxyanion

1. -ate \rightarrow -ic acid

NO₃⁻ nitrate HNO₃ nitric acid

CO₃²⁻ carbonate H₂CO₃ carbonic acid

 SO_4^{2-} sulfate H_2SO_4 sulfuric acid

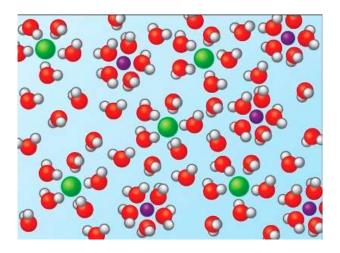
PO₄³⁻ phosphate H₃PO₄ phosphoric acid

Oxyacids, Continued

form H⁺ and oxyanion

2. -ite \rightarrow -ous acid

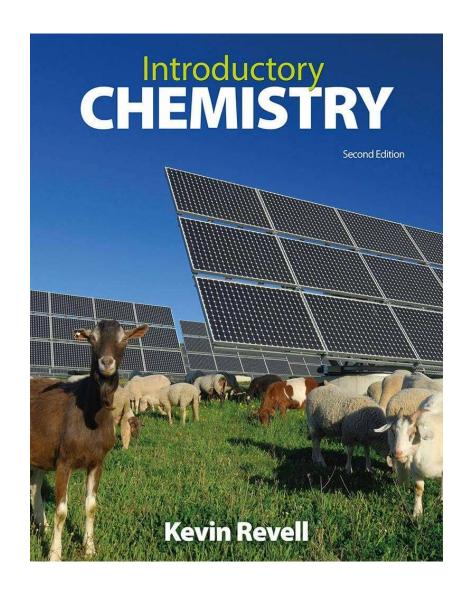
NO₂ nitrite

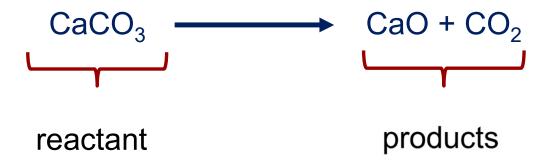

HNO₂ nitrous acid

ClO₂- chlorite

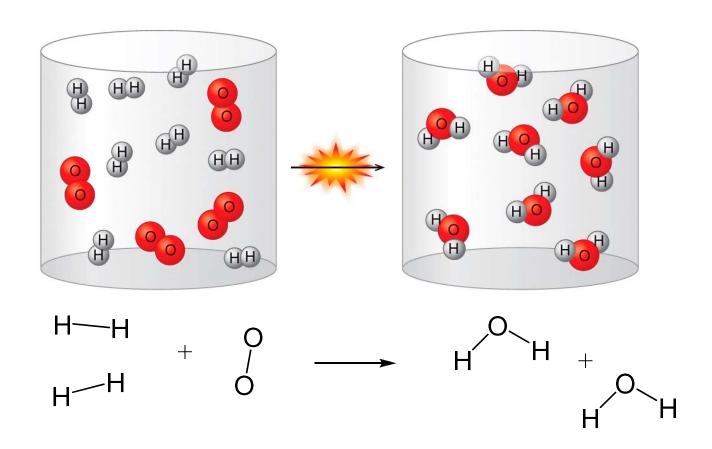
HClO₂ chlorous acid

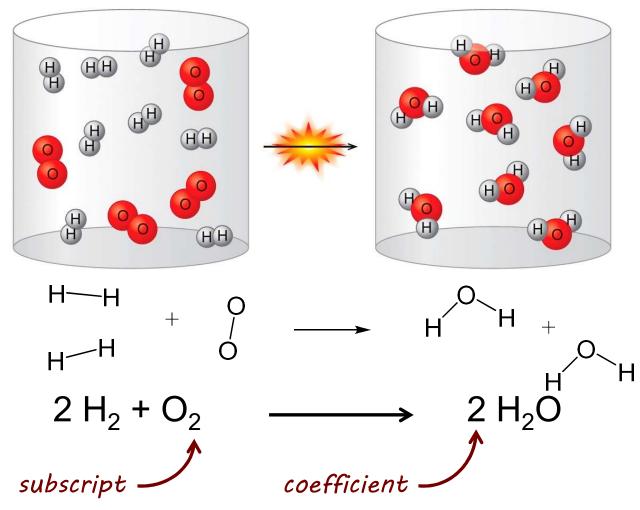
Summary, Electrolytes


electrolytes = ionic compounds acids (form H+ ions in water)


Introductory Chemistry Chem 103

Chapter 6 – Chemical Reactions

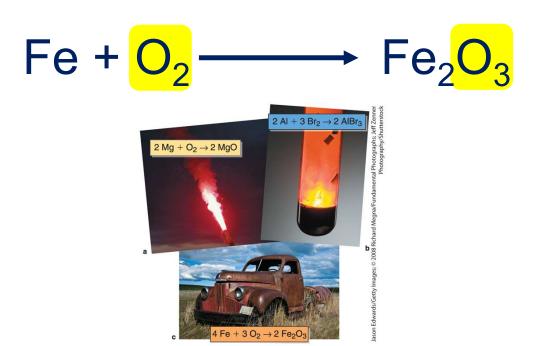

Lecture Slides


Chemical Equations

Chemical Equations Show Ratios of Substances

Chemical Equations Show Ratios of Substances, Continued

The Ratios In a Chemical Reaction Are Constant


$$2 \text{ H}_2$$
 + O_2 \longrightarrow $2 \text{ H}_2\text{O}$
 2 molecules 0 molecules
 0 molecules 0 molecules 0 molecules
 0 molecules 0 molecules 0 molecules 0 molecules

In a **balanced equation**, the number and type of each atom are the same on both sides of the arrow.

Properly balanced – smallest whole-number ratio

Balancing Equations

In a **balanced equation**, the number and type of each atom are the same on both sides of the arrow.

Practice Balancing Equations

$$4 \text{Fe} + 3 \text{O}_2 \longrightarrow 2 \text{Fe}_2 \text{O}_3$$

$$4 \text{Fe} + 3 \text{O}_2 \longrightarrow 42 \text{Fe}$$

$$6 \text{Z} = 0 \qquad 6 \text{Z} = 0$$

- 1. Identify number and type on each side.
- 2. Add <u>coefficients</u> to balance atoms.
- 3. Do not change subscripts.

Practice Balancing Equations, Continued

$$AI_{2}O_{3} + 3C + 3CI_{2} \longrightarrow 2AICI_{3} + 3CO$$
 $AI - 2$
 $O - 3$
 $C - 73$
 $CI - 26$

All - 3CO

CI - 3CO

All - 3CO

All - 3CO

All - 3CO

All - 3CO

CI - 3CO

All - 3CO

All - 3CO

All - 3CO

CI - 3CO

All - 3CO

All - 3CO

All - 3CO

All - 3CO

CI - 3CO

All - 3CO

CI - 3CO

All - 3CO

CI - 3CO

All - 3C

Balance elemental forms last.

Strategies for Balancing Equations

balance polyatomic ions

$$Ni(NO_3)_2 + 2 NaOH \longrightarrow Ni(OH)_2 + 2 NaNO_3$$

nitrate: NO_3^-

hydroxide: OH-

Strategies for Balancing Equations, Continued

use a fractional coefficient for diatomic molecules

$$\left(C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O\right) \times 2$$

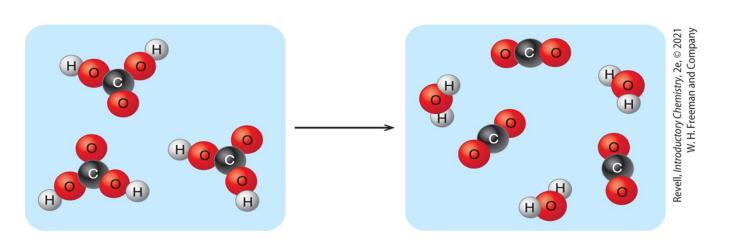
need 7 oxygen atoms!

$$2 C_2 H_6 + 7 O_2 \longrightarrow 4 CO_2 + 6 H_2 O$$

Equations with Phase Notations

phase notations: show phase or state of reaction components

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$


TABLE 6.1 Phase Symbols

Symbol	Meaning
(s)	Solid
(/)	Liquid
(<i>g</i>)	Gas
(aq)	Aqueous solution (dissolved in water)

Aqueous Solutions

(aq) - indicates the substance is dissolved in water

$$H_2CO_3$$
 (aq) \longrightarrow H_2O (l) $+$ CO_2 (g)

Chemical Equations Can Show Changes of State

$$H_2O$$
 (1) \longrightarrow H_2O (s)

Classifying Reactions, Part 1

Classifying Reactions, Part 2

Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

Classifying Reactions, Part 3

Decomposition:

One forms two or more

$$2 H_2O \longrightarrow 2 H_2 + O_2$$

$$CaCO_3 \longrightarrow CaO + CO_2$$

Synthesis (Combination):

Two form one

$$H_2 + Cl_2 \longrightarrow 2 HCl$$

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

Single Displacement:

One element replaces another

$$Zn + CuCl_2 \longrightarrow ZnCl_2 + Cu$$

$$Ca + 2 HBr \longrightarrow CaBr_2 + H_2$$

Double Displacement:

Two ions replace each other

$$Nal + AgNO_3 \longrightarrow Agl + NaNO_3$$

$$MgBr_2 + Pb(ClO_4)_2 \longrightarrow PbBr_2 + Mg(ClO_4)_2$$

Decomposition Reactions

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Decomposition:

One forms two or more

Synthesis Reactions

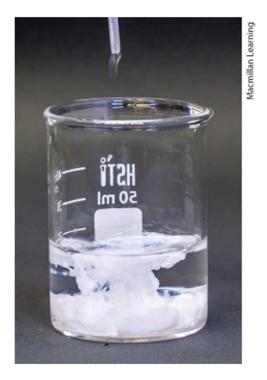
CaO (s) + H₂O (l)
$$\rightarrow$$
 Ca(OH)₂ (s)
H₂ (g) + Cl₂ (g) \rightarrow 2 HCl (g)

Synthesis (Combination): *Two form one*

Single Displacement Reactions

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

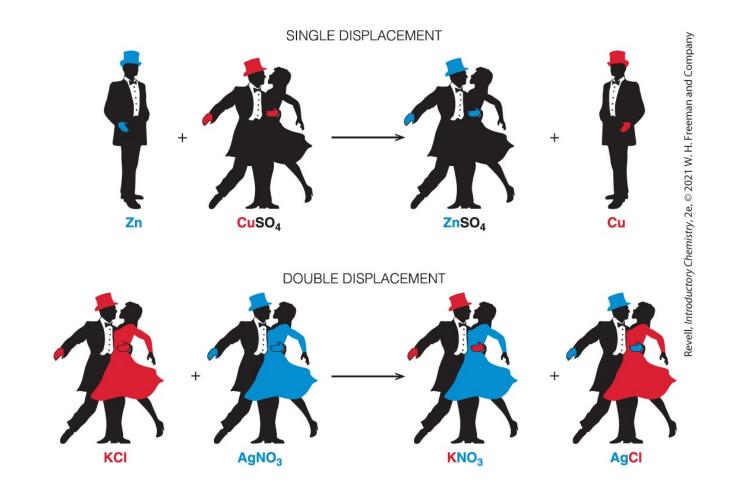
$$\operatorname{Sn}(s) + 2 \operatorname{HCI}(aq) \rightarrow \operatorname{SnCI}_2(aq) + \operatorname{H}_2(g)$$


Single Displacement:

One element replaces another

Double Displacement Reactions

$$KCI_{(aq)} + AgNO_{3}_{(aq)} \rightarrow KNO_{3}_{(aq)} + AgCI_{(s)}$$


The anions "swap" positions

Double Displacement

Two ions replace each other

Single and Double Displacement Reactions

Classifying Reactions Summary

Decomposition:

One forms two or more

$$2 H_2O \longrightarrow 2 H_2 + O_2$$

$$CaCO_3 \longrightarrow CaO + CO_2$$

Synthesis (Combination):

Two form one

$$H_2 + Cl_2 \longrightarrow 2 HCl$$

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

Single Displacement:

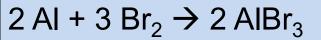
One element replaces another

$$Zn + CuCl_2 \longrightarrow ZnCl_2 + Cu$$

$$Ca + 2 HBr \longrightarrow CaBr_2 + H_2$$

Double Displacement:

Two ions replace each other


$$Nal + AgNO_3 \longrightarrow Agl + NaNO_3$$

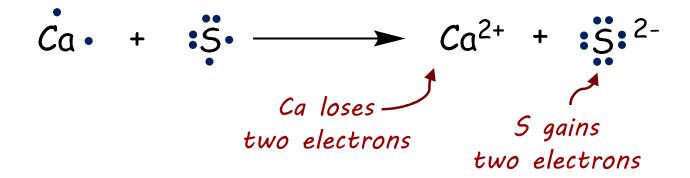
$$MgBr_2 + Pb(ClO_4)_2 \longrightarrow PbBr_2 + Mg(ClO_4)_2$$

Revell, *Introductory Chemistry*, 2e, © 2021 W. H. Freeman and Company

Reactions between Metals and Nonmetals

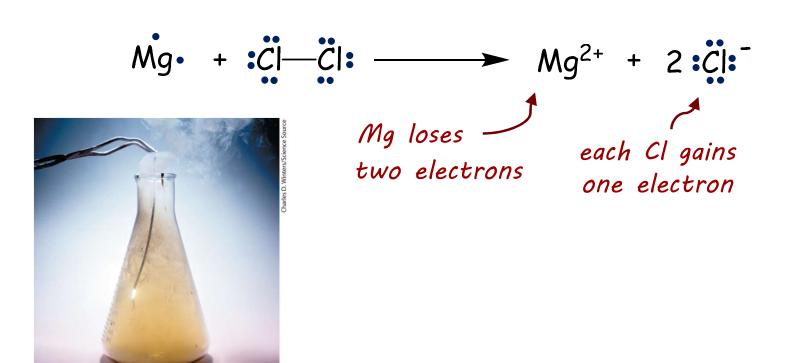
Metal + Nonmetal → Ionic Compound

© 2008 Richard Megna/Fundamental Photographs


metal cation + nonmetal anion

oxidation – loss of electrons

reduction – gain of electrons


Reactions between Metals and Nonmetals Example 1

$$Ca(s) + S(s) \rightarrow CaS(s)$$

Reactions between Metals and Nonmetals Example 2

$$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$$

Metals and Nonmetals Form Specific, Stable Ions.

H ⁺					Мо	natom	nic ato	ms							
Li+	Be ²⁺											N ³⁻	O ²⁻	F	
Na ⁺	Mg ²⁺									Al ³⁺		P3-	S ²⁻	Cl ⁻	
K ⁺	Ca ²⁺		Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺		Cu ⁺ Cu ²⁺	Zn ²⁺					Br-	
Rb ⁺	Sr ²⁺							Ag ⁺			Sn ²⁺ Sn ⁴⁺			L	
											Pb ²⁺ Pb ⁴⁺				

ntroductory Chemistry, 2e, © 2021 W. H. Freeman and Company

Reactions Between Metals and Nonmetals Practice

What compound is formed when aluminum metal reacts with chlorine gas? Write a balanced equation for this reaction.

$$CI^{-}$$
 AI^{3+}
 CI^{-}
 CI^{-}
 $AICI_{3}$
 CI^{-}
 $AICI_{3}$
 $AICI_{3}$
 $AICI_{3}$
 $AICI_{3}$

Reactions Between Metals and Nonmetals, More Practice

When tin metal reacts with bromine, it is oxidized to the tin(IV) ion, while bromine is reduced to form bromide ions. Write a balanced equation for this reaction.

$$Sn^{4+} Br^{-} SnBr_{4}$$

$$Sn + 2 Br_{2} \rightarrow SnBr_{4}$$

Combustion Reactions

reactions in which oxygen gas combines with elements or compounds to produce oxides.

$$Sn + O_2 \rightarrow SnO_2$$
 $tin(IV)$ oxide - ionic

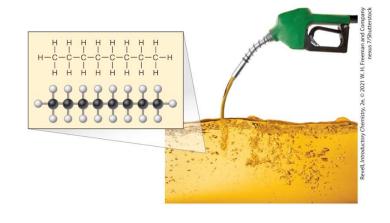
 $C + O_2 \rightarrow CO_2$
 $carbon$ dioxide - covalent

 $S + O_2 \rightarrow SO_2$
 $sulfur$ dioxide - covalent

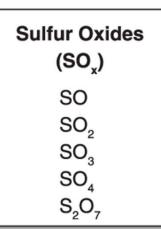
Hydrocarbons compounds composed of hydrogen and carbon

TABLE 6.2 Common Hydrocarbons

Formula	Name	Use
CH ₄	Methane	Natural gas
C ₂ H ₂	Acetylene	Torches for cutting and welding
C ₂ H ₄	Ethylene	Manufacture of plastic
C ₃ H ₈	Propane	Natural gas component; used for heating and power
C ₄ H ₁₀	Butane	Lighter fluid
C ₆ H ₆	Benzene	Solvent; precursor for many pharmaceutical compounds
C ₈ H ₁₈	Octane	Component of gasoline


Combustion of Hydrocarbons

hydrocarbon + oxygen → carbon dioxide + water

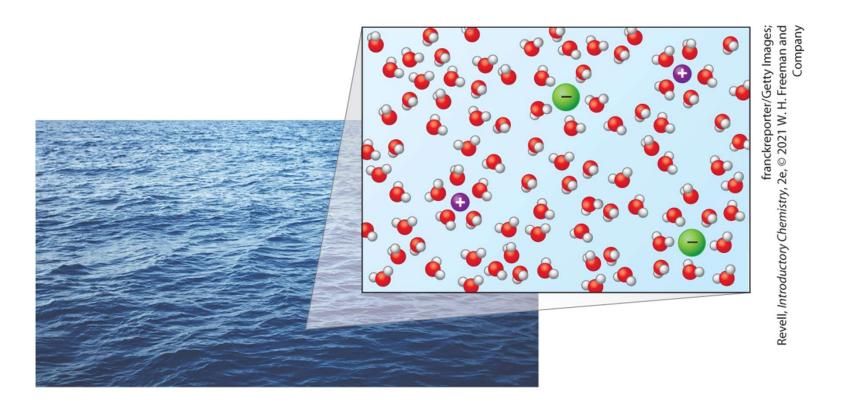

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O_2$$

The Combustion of Sulfur Produces Sulfur Oxides

Combustion Reactions Practice

Write a balanced equation for the combustion of calcium metal.


Combustion Reactions, More Practice

Write a balanced equation for the combustion of propane gas, a common fuel used for home heating, cooking, etc. The formula for propane is C_3H_8 .

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Reactions in Aqueous Solution

Ionic compounds dissociate when dissolved in water.

Comparing Molecular and Ionic Equations

molecular equation – shows ions together as compounds

$$KBr(s) \rightarrow KBr(aq)$$

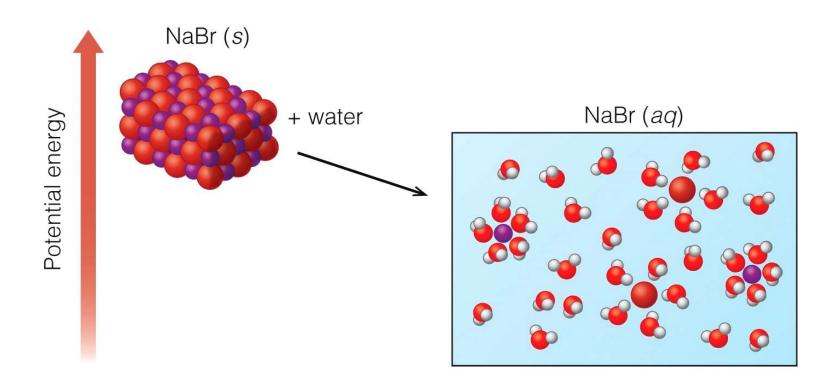
ionic equation – shows dissociated ions as separate species

$$KBr(s) \rightarrow K^{+}(aq) + Br^{-}(aq)$$

Writing Ionic Equations Practice

Show this process as an ionic equation:

$$Mg(NO_3)_2 (s) \rightarrow Mg(NO_3)_2 (aq)$$


$$Mg(NO_3)_2(s) \rightarrow Mg^{2+}(aq) + 2 NO_3^{-}(aq)$$

Predicting Solubility

Many ionic compounds are insoluble in water.

Predicting Solubility, Continued

Factors affecting solubility

- Charge on lons
- Size of lons
- How tightly ions pack together

Soluble

NaCl (Na⁺ and Cl⁻) KNO₃ (K⁺ and NO₃⁻) NH₄Br (NH₄⁺ and Br⁻)

Insoluble

 Fe_2O_3 (Fe^{3+} and O^{2-}) PbS (Pb^{2+} and S^{2-}) BaCO₃ (Ba^{2+} and CO_3^{2-})

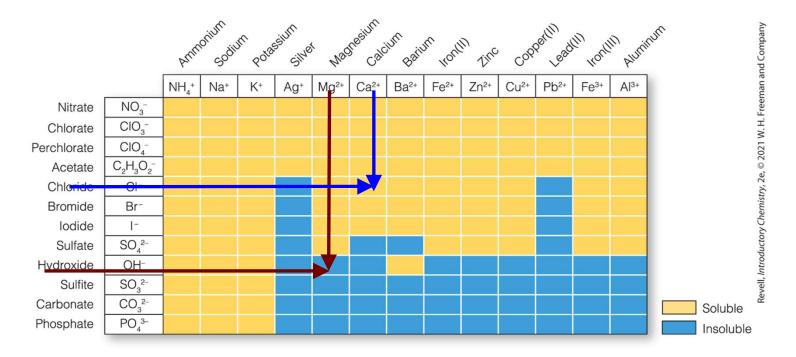
Solubility Rules:

- Halogens (F⁻, Br⁻, Cl⁻, I⁻) are soluble
 - Unless bonded to Ag⁺ or Pb²⁺

Soluble

KF ZnCl₂ FeBr₂ Cul

Insoluble


AgF AgCl PbBr₂ PbI₂

Solubility Rules, Continued

TABLE 6.3 Solubility Rules

	ompounds Containing These Ions Are Nearly Always	s Soluble		
Alkali metals	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺			
Ammonium	NH_4^+			
Large –1 oxyani	$NO_3^-, CIO_3^-, CIO_4^-, CIO_4^-$	₂ H ₃ O ₂ ⁻		
Compounds Containing These Ions Are Usually Soluble				
Halides (except Pb ²⁺ , Ag	F ⁻ , Cl ⁻ , Br ⁻ , l ⁻			
Sulfate (except Ba ²⁺ , Ca	SO ₄ ²⁻ +, Pb ²⁺ , Ag ⁺)			
	Not Soluble			
Most other ions				

Solubility Tables

Ex.: $CaCl_2$ $Mg(OH)_2$ soluble insoluble

Determine Solubility

Determine whether the following compounds are soluble or insoluble in water:

 Na_3PO_4 $AICI_3$ $CaCO_3$ soluble insoluble

TABLE 6.3 Solubility Rules

Compounds Containing These Ions Are Nearly Always Soluble				
Alkali metals	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺			
Ammonium	NH_4^+			
Large –1 oxyanions	$NO_3^-, CIO_3^-, CIO_4^-, C_2H_3O_2^-$			
Compounds Containing These Ions Are Usually Soluble				
Halides (except Pb ²⁺ , Ag ⁺)	F ⁻ , Cl ⁻ , Br ⁻ , l ⁻			
Sulfate (except Ba ²⁺ , Ca ²⁺ , Pb ²⁺ , Ag ⁺)	SO ₄ ²⁻			
Not Soluble				
Most other ions				

Precipitation Reactions

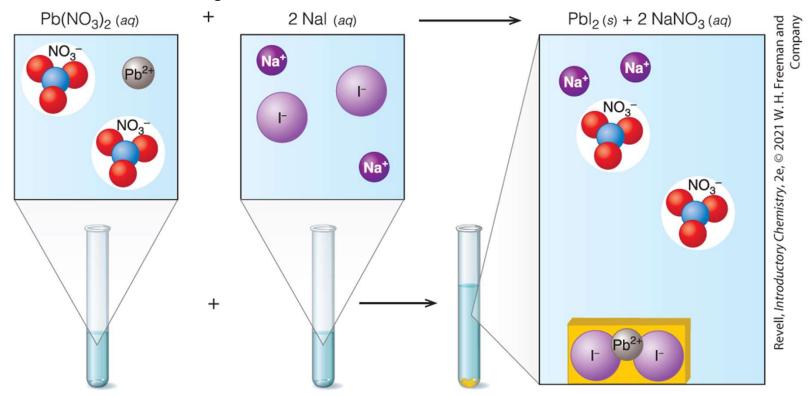
precipitation reaction two aqueous solutions produce an insoluble productprecipitate the solid product formed in the reaction

 $Pb(NO_3)_2 (aq) + 2 Nal (aq) \rightarrow Pbl_2 (s) + 2 NaNO_3 (aq)$

 $Pb(NO_3)_2$ (aq)

Nal (aq)

Precipitation Reactions Are Double Displacement Reactions


 $Pb(NO_3)_2 (aq) + 2 Nal (aq) \rightarrow Pbl_2 (s) + 2 NaNO_3 (aq)$ The anions "swap" positions

How Precipitation Reactions Occur

$$Pb^{2+}(aq) + 2 NO_3^-(aq) + 2 Na^+(aq) + 2 I^-(aq) \rightarrow 2 Na^+(aq) + 2 NO_3^-(aq) + PbI_2(s)$$

spectator ions

Driving force - formation of the solid

Comparing Complete and Net Ionic Equations

Complete ionic equation shows all ions present

$$Pb^{2+}(aq) + 2 NO_3^-(aq) + 2 Na^+(aq) + 2 I^-(aq) \rightarrow 2 Na^+(aq) + 2 NO_3^-(aq) + PbI_2(s)$$

spectator ions

Net ionic equation

Only include ions involved in the precipitation

$$Pb^{2+}(aq) + 2 I^{-}(aq) \rightarrow PbI_{2}(s)$$

Writing Precipitation Reactions

Three ways to show a precipitation reaction:

Molecular Equation

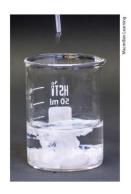
shows neutral compounds

$$Pb(NO_3)_2$$
 (aq) + 2 KCl (aq) \rightarrow $PbCl_2$ (s) + 2 KNO₃ (aq)

Complete Ionic Equation

shows all ions present

$$Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 K^{+}(aq) + 2 Cl^{-}(aq) \rightarrow PbCl_2(s) + 2 K^{+}(aq) + 2 NO_3^{-}(aq)$$


Net Ionic Equation

Omits spectator ions; only shows ions that react.

$$Pb^{2+}(aq) + 2 Cl^{-}(aq) \rightarrow PbCl_{2}(s)$$

Use solubility rules to predict precipitation reactions.

Precipitation Reactions Practice

When aqueous silver acetate is combined with aqueous barium chloride, a white precipitate forms. Write balanced complete ionic, net ionic, and molecular equations to show the reaction that takes place. Include phase symbols.

silver acetate solution:

$$Ag^{+}$$
 (aq) + $C_{2}H_{3}O_{2}^{-}$ (aq)

AgCl (s)

barium chloride solution:

$$Ba^{2+}$$
 (aq) + 2 Cl⁻ (aq)

Complete ionic equation

$$2 Ag^{+}(aq) + 2 C_{2}H_{3}O_{2}^{-}(aq) + Ba^{2+}(aq) + 2 Cl^{-}(aq) \rightarrow Ba^{2+}(aq) + 2 C_{2}H_{3}O_{2}^{-}(aq) + 2 AgCl(s)$$

Net ionic equation

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

Molecular equation

$$2 \operatorname{AgC}_2H_3O_2(aq) + \operatorname{BaCl}_2(aq) \rightarrow \operatorname{Ba}(C_2H_3O_2)_2(aq) + 2 \operatorname{AgCl}(s)$$

Summary of Precipitation Reactions

- Soluble ionic compounds dissociate in water.
- Some ionic compounds are insoluble in water.
- Solubility rules predict the solubility of compounds.
- Precipitation reaction: two solutions combine to produce an insoluble product.
- We describe reactions in solution using
 - molecular equations
 - complete ionic equations
 - net ionic equations

Reactions in Aqueous Solution

acids compounds that produce H⁺ ions in aqueous solution

TABLE 6.4 Common Acids

Formula	Name
HF	Hydrofluoric acid
H CI	Hydrochloric acid
H Br	Hydrobromic acid
HI	Hydroiodic acid
H ₂ CO ₃	Carbonic acid
HNO ₃	Nitric acid
H _{NO₂}	Nitrous acid
H ₂ SO ₄	Sulfuric acid
H ₃ PO ₄	Phosphoric acid
HC ₂ H ₃ O ₂	Acetic acid

$$HCI$$
 (aq) \rightarrow H^+ (aq) $+$ CI^- (aq)

$$HNO_3$$
 (aq) \rightarrow H^+ (aq) $+$ NO_3^- (aq)

Reactions in Aqueous Solution, Continued

bases compounds that produce OH⁻ ions in aqueous solution

$$NaOH$$
 (s) $\rightarrow Na^+$ (aq) + OH^- (aq)

TABLE 6.5 Common Hydroxide Base				
Formula	Name			
Li <mark>OH</mark>	Lithium hydroxide			
Na <mark>OH</mark>	Sodium hydroxide			
KOH	Potassium hydroxide			
Ba(OH) ₂	Barium hydroxide			

Neutralization Reactions

Acids and bases undergo neutralization reactions.

$$H^+$$
 (aq) + OH^- (aq) $\rightarrow H_2O$ (I)

Ex.: hydrochloric acid reacts with sodium hydroxide

$$\begin{aligned} & \text{HCI } (\textit{aq}) + \text{NaOH } (\textit{aq}) \xrightarrow{} \text{H}_2\text{O} \textit{(I)} + \text{NaCI } (\textit{aq}) \\ & \text{H}^+ \textit{(aq)} + \frac{\text{CI}^- \textit{(aq)}}{\text{(aq)}} + \frac{\text{Na}^+ \textit{(aq)}}{\text{(aq)}} + \frac{\text{OH}^- \textit{(aq)}}{\text{OH}^- \textit{(aq)}} \xrightarrow{} \text{H}_2\text{O} \textit{(I)} + \frac{\text{Na}^+ \textit{(aq)}}{\text{(aq)}} + \frac{\text{CI}^- \textit{(aq)}}{\text{CI}^- \textit{(aq)}} \end{aligned}$$

Ex.: nitric acid reacts with lithium hydroxide

$$HNO_3 (aq) + LiOH (aq) \rightarrow H_2O (l) + LiNO_3 (aq)$$

$$a "salt"$$

Neutralization Reactions, Continued

Acid-base neutralization is a **double displacement reaction**.

$$H^+$$
 (aq) + OH^- (aq) $\rightarrow H_2O$ (l)

The formation of water is the driving force for the reaction.

Acid-Base Reactions Practice

Write a balanced equation to show the reaction of sulfuric acid with sodium hydroxide. Include phase symbols.

acid + base
$$\rightarrow$$
 water + salt
$$H_2SO_4 + 2NaOH \rightarrow 2H_2O + Na_2SO_4$$

$$H_2SO_4(aq) + 2 NaOH(aq) \rightarrow 2 H_2O(1) + Na_2SO_4(aq)$$