Introductory Chemistry Chem 103

# Chapter 4 – Light and Electronic Structure

Lecture Slides





What is Light? electromagnetic radiation • a form of energy • travels in waves • exists in increments called photons































# **Photoelectric Effect**

Early 20th Century:

- · Dense nucleus surrounded by electrons
- Photoelectric effect: light causes atoms to eject electrons

















# Summary of the Bohr Model

Explained

- The hydrogen line spectrum
- Some properties of main group elements
- Did not explain
  - More complex line spectra
  - Properties of the transition elements











## Energy Levels and Sublevels, Part 1

- 1. Electrons occupy different energy levels.
  - Level is identified by its **principal quantum number**, *n* (1, 2, 3...)

3

4

18

32





# Energy Levels and Sublevels, Part 3

3. Each sublevel contains one or more orbitals.

| Sublevel | Number of<br>Orbitals |
|----------|-----------------------|
| S        | 1                     |
| p        | 3                     |
| d        | 5                     |
| f        | 7                     |





# Energy Levels and Sublevels, Summary

- 1. Electrons occupy different energy levels.
- 2. Each level contains sublevels.
- 3. Each sublevel contains orbitals.
- 4. Each orbital holds up to two electrons.

| Sublevel | Number of<br>Orbitals | Electron<br>Capacity |
|----------|-----------------------|----------------------|
| S        | 1                     | 2                    |
| p        | 3                     | 6                    |
| d        | 5                     | 10                   |
| f        | 7                     | 14                   |











| Leve     | el 3:s+p+d            | , part 2             |
|----------|-----------------------|----------------------|
| Sublevel | Number of<br>Orbitals | Electron<br>Capacity |
| s        | 1                     | 2                    |
| p        | 3                     | 6                    |
| d        | 5                     | 10                   |
|          | Total:                | 18                   |
|          |                       |                      |
|          |                       |                      |



| Level 4  | <b>4:</b> s + p + d + i | f, part 2            |
|----------|-------------------------|----------------------|
| Sublevel | Number of<br>Orbitals   | Electron<br>Capacity |
| S        | 1                       | 2                    |
| р        | 3                       | 6                    |
| d        | 5                       | 10                   |
| f        | 7                       | 14                   |
|          |                         |                      |
|          | Total:                  | 32                   |

| znergy Lever      |                       |             |                       |                       |
|-------------------|-----------------------|-------------|-----------------------|-----------------------|
|                   |                       |             |                       | f (14 e⁻)             |
| Sublevele         |                       |             | d (10 e⁻)             | d (10 e⁻)             |
| Sublevels         |                       | p (6 e⁻)    | p (6 e⁻)              | p (6 e⁻)              |
|                   | s (2 e <sup>-</sup> ) | s (2 e⁻)    | s (2 e <sup>-</sup> ) | s (2 e <sup>-</sup> ) |
| Electron Capacity | 2                     | 8           | 18                    | 32                    |
| Note : the symb   | ool e⁻ mea            | ans electro | on.                   |                       |



















| Electron Confi                      | gurations of Row 2 Elements                                                                                                                            |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 4<br>Li Be<br>6.94 9.01           | 5      6      7      8      9      10        B      C      N      O      F      Ne        10.81      12.01      14.01      16.00      19.00      20.18 |
| Li: 1s <sup>2</sup> 2s <sup>1</sup> | B: $1s^2 2s^2 2p^7$                                                                                                                                    |
| Be: 1s <sup>2</sup> 2s <sup>2</sup> | C: $1s^2 2s^2 2p^2$                                                                                                                                    |
|                                     | N: 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>3</sup>                                                                                                     |
|                                     | $O: \qquad 1s^2 2s^2 2p^4$                                                                                                                             |
|                                     | F: $1s^2 2s^2 2p^5$                                                                                                                                    |
|                                     | Ne: 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup>                                                                                                    |
|                                     |                                                                                                                                                        |











| Electron Con | figurations for                                                                                                         | Larger Atoms                    |
|--------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| inne         | er electrons                                                                                                            | Noble gas<br>notation           |
| Sodium:      | 1 <i>s</i> <sup>2</sup> 2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>6</sup> 3 <i>s</i> <sup>1</sup>                         | [Ne]3s <sup>1</sup>             |
| Phosphorous: | 1 <i>s</i> <sup>2</sup> 2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>6</sup> 3 <i>s</i> <sup>2</sup> 3 <i>p</i> <sup>3</sup> | [Ne]3 <i>s</i> ²3p³             |
| Chlorine:    | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>5</sup>                                         | [Ne]3 <i>s</i> ²3p <sup>5</sup> |
|              | 1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i> <sup>6</sup> = [N                                                                    | le]                             |





| Example, Electron Configuration for lons - Sodium      What is the electron configuration of a sodium atom?      What is the electron configuration of a sodium ion with a +1 charge      species    Symbol      full    noble-gas      species    Symbol      full    noble-gas      sodium atom    Na      1s22s <sup>2</sup> 2p <sup>2</sup> 3s <sup>3</sup> (Ne13s <sup>3</sup> ) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the electron configuration of a sodium atom?      What is the electron configuration of a sodium ion with a +1 charge      species    Symbol      full    noble-gas      species    Symbol      full    shorthand      sodium atom    Na      1s <sup>2</sup> 2 <sup>2</sup> 2 <sup>2</sup> 2 <sup>2</sup> 5 <sup>3</sup> (Ne/3 <sup>3</sup> )                                |
| species      Symbol      full<br>configuration      noble-gas<br>shorthand        sodium atom      Na      1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>2</sup> 3s <sup>1</sup> [Ne73s <sup>1</sup> ]                                                                                                                                                                                      |
| sodium atom Na 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>1</sup> [Ne]3s <sup>1</sup>                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                       |
| sodium ion (+1 charge) Na <sup>+</sup> 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> [He]2s <sup>2</sup> 2p <sup>6</sup> or [Ne                                                                                                                                                                                                                                                     |

















| s  |            |    |
|----|------------|----|
| 25 |            | 2p |
| 3s |            | 30 |
| 4s | 3 <i>d</i> | 4p |
| 58 | 4 <i>d</i> | 5p |
| 6s | 5d         | 6р |
| 75 | 6 <i>d</i> | 7p |
| -  | 41         |    |
| 4  | 5/         |    |



























|              | Nan              | ning Cations |                |
|--------------|------------------|--------------|----------------|
| letal catior | ns have the      | same name as | the neutral me |
|              | Na⁺              | sodium       |                |
|              | Mg <sup>2</sup>  | + magnesi    | um             |
|              |                  |              |                |
| Atom         | lon              | Older Name   | Modern Name    |
| Iron         | Fe <sup>2+</sup> | ferrous      | iron(II)       |
| lion         | Fe <sup>3+</sup> | ferric       | iron(III)      |
| Coppor       | Cu⁺              | cuprous      | copper(I)      |
| Copper       | Cu <sup>2+</sup> | cupric       | copper(II)     |









| Atom     | Anion Symbol    | Anion Name |
|----------|-----------------|------------|
| chlorine | Cl-             | chloride   |
| oxygen   | O <sup>2–</sup> | oxide      |
| sulfur   | S <sup>2–</sup> | sulfide    |
| nitrogen | N <sup>3–</sup> | nitride    |

| NH4 <sup>+</sup> Ammonium |                      |                   |                    |  |
|---------------------------|----------------------|-------------------|--------------------|--|
| NO3-                      | Nitrate              | SO42-             | Sulfate            |  |
| NO2-                      | Nitrite              | SO32-             | Sulfite            |  |
| CO32-                     | Carbonate            | HSO4-             | Bisulfate          |  |
| HCO3-                     | Bicarbonate          |                   | (Hydrogen sulfate) |  |
|                           | (Hydrogen carbonate) | CIO4-             | Perchlorate        |  |
| PO43-                     | Phosphate            | CIO3-             | Chlorate           |  |
| HPO42-                    | Hydrogen phosphate   | CIO2-             | Chlorite           |  |
| C2H3O2-                   | Acetate              | CIO-              | Hypochlorite       |  |
| OH-                       | Hydroxide            | CrO42-            | Chromate           |  |
| CN-                       | Cyanide              | Cr2072-           | Dichromate         |  |
| 02-                       | Peroxide             | MnO₄ <sup>-</sup> | Permanganate       |  |















ionic bond – an attraction between oppositely charged ions
 ionic compound – composed of charged ions
 Metal cations and nonmetal anions form ionic compounds.











| Namin             | Naming Ionic Compounds, Part 1 |  |  |  |  |
|-------------------|--------------------------------|--|--|--|--|
|                   | cation anion                   |  |  |  |  |
| NaCl              | sodium chloride                |  |  |  |  |
| MgCl <sub>2</sub> | magnesium chloride             |  |  |  |  |
| MgSO <sub>4</sub> | magnesium sulfate              |  |  |  |  |





# Summary, Ionic Compounds

- Ionic bonds occur between oppositely charged ions
- In ionic compounds, total charge = 0
- Named as "cation anion"
- Formula ⇔ Name









| Seven Elements Form Diatomic Molecules |                                                                   |               |  |  |  |
|----------------------------------------|-------------------------------------------------------------------|---------------|--|--|--|
|                                        | The Magnificent Seven<br>Elements that form<br>Diatomic Molecules | and Company L |  |  |  |
|                                        | Hydrogen: H <sub>2</sub>                                          | 1 M. H. Fr    |  |  |  |
|                                        | Nitrogen: N <sub>2</sub>                                          | s. ⇔ 202      |  |  |  |
|                                        | Oxygen: O <sub>2</sub>                                            | nistry, 2e    |  |  |  |
|                                        | Fluorine: F2                                                      | ory Chen      |  |  |  |
|                                        | Chlorine: Cl <sub>2</sub>                                         | itroduct      |  |  |  |
|                                        | Bromine: Br <sub>2</sub>                                          | levell, in    |  |  |  |
|                                        | lodine: I <sub>2</sub>                                            |               |  |  |  |
|                                        | t                                                                 | -             |  |  |  |















# **Using Greek Prefixes**

"pent" or "penta"

- PCl<sub>5</sub> phosphorus pentachloride
- P<sub>2</sub>O<sub>5</sub> diphosphorus pentoxide

Remove "a" if anion begins with a vowel.

# **Practice Naming Covalent Compounds**

Nitrogen and oxygen form two covalent compounds,  $NO_2$  and  $N_2O_4$ . Name each of these compounds.

NO<sub>2</sub> nitrogen dioxide

N<sub>2</sub>O<sub>4</sub> dinitrogen tetroxide

#### **Summary of Covalent Compounds**

- · In covalent bonds, atoms share electrons
- Covalent bonds form between nonmetals
- Most covalent compounds form discrete molecules
- We describe molecules using
  Lewis structures
  Molecular formulas
- Naming binary covalent compounds
   Leftmost element first
  - Second element named as anion
  - Prefixes indicate the number of atoms present















| Binary Acids |                   |  |
|--------------|-------------------|--|
| HF           | hydrofluoric acid |  |
| HCI          | hydrochloric acid |  |
| HBr          | hydrobromic acid  |  |
| н            | hydroiodic acid   |  |
|              |                   |  |

| Oxyacids |                               |                         |                  |                 |  |  |  |
|----------|-------------------------------|-------------------------|------------------|-----------------|--|--|--|
|          | form H⁺ and oxyanion          |                         |                  |                 |  |  |  |
|          | 1ate → -ic acid               |                         |                  |                 |  |  |  |
| I        | NO₃⁻                          | nitrate                 | HNO <sub>3</sub> | nitric acid     |  |  |  |
| (        | CO <sub>3</sub> <sup>2-</sup> | carbon <mark>ate</mark> | $H_2CO_3$        | carbonic acid   |  |  |  |
| Ś        | SO4 <sup>2-</sup>             | sulfate                 | $H_2SO_4$        | sulfuric acid   |  |  |  |
| F        | PO <sub>4</sub> <sup>3–</sup> | phosph <mark>ate</mark> | $H_3PO_4$        | phosphoric acid |  |  |  |
|          |                               |                         |                  |                 |  |  |  |

























| Equations with Phase Notations                              |                         |                                          |     |  |  |
|-------------------------------------------------------------|-------------------------|------------------------------------------|-----|--|--|
| phase notations: show phase or state of reaction components |                         |                                          |     |  |  |
|                                                             | CaCO <sub>3</sub> (s)   | → CaO (s) + CO <sub>2</sub>              | (g) |  |  |
|                                                             |                         |                                          |     |  |  |
|                                                             | TABLE 6.1 Phase Symbols |                                          |     |  |  |
|                                                             | Symbol                  |                                          |     |  |  |
|                                                             | (\$)                    | Solid                                    |     |  |  |
|                                                             | (/)                     | Liquid                                   |     |  |  |
|                                                             | (g)                     | Gas                                      |     |  |  |
|                                                             | ( <i>aq</i> )           | Aqueous solution<br>(dissolved in water) |     |  |  |
|                                                             |                         |                                          |     |  |  |





































| TABLE                          | 6.2 Comn  | non Hydrocarbons                                     |                       |
|--------------------------------|-----------|------------------------------------------------------|-----------------------|
| Formula                        | Name      | Use                                                  |                       |
| CH4                            | Methane   | Natural gas                                          | State State           |
| C <sub>2</sub> H <sub>2</sub>  | Acetylene | Torches for cutting and welding                      | and the second second |
| C <sub>2</sub> H <sub>4</sub>  | Ethylene  | Manufacture of plastic                               |                       |
| C <sub>3</sub> H <sub>8</sub>  | Propane   | Natural gas component; used for heating and power    |                       |
| C <sub>4</sub> H <sub>10</sub> | Butane    | Lighter fluid                                        |                       |
| C <sub>6</sub> H <sub>6</sub>  | Benzene   | Solvent; precursor for many pharmaceutical compounds |                       |
| C <sub>8</sub> H <sub>18</sub> | Octane    | Component of gasoline                                |                       |











### **Comparing Molecular and Ionic Equations**

molecular equation - shows ions together as compounds

 $\mathsf{KBr}\;{}_{(s)} \xrightarrow{} \mathsf{KBr}\;{}_{(aq)}$ 

ionic equation - shows dissociated ions as separate species

 $\mathsf{KBr}\ (s) \xrightarrow{} \mathsf{K}^+\ (aq) + \mathsf{Br}^-\ (aq)$ 

Writing Ionic Equations Practice

Show this process as an ionic equation:

 $\mathrm{Mg}(\mathrm{NO}_3)_2 \text{ (s)} \rightarrow \mathrm{Mg}(\mathrm{NO}_3)_2 \text{ (aq)}$ 

 $Mg(NO_3)_2(s) \rightarrow Mg^{2+}(aq) + 2 NO_3^{-}(aq)$ 





















#### **Comparing Complete and Net Ionic Equations**

Complete ionic equation shows all ions present

 $\frac{\mathsf{Pb}^{2*}(\mathsf{aq}) + 2 \operatorname{NO_3^-}(\mathsf{aq}) + 2 \operatorname{Na*}(\mathsf{aq}) + 2 \operatorname{I^-}(\mathsf{aq})}{\operatorname{spectator ions}} \rightarrow 2 \operatorname{Na*}(\mathsf{aq}) + 2 \operatorname{NO_3^-}(\mathsf{aq}) + \frac{\mathsf{Pbl}_2(\mathsf{s})}{\operatorname{spectator ions}}$ 

Net ionic equation Only include ions involved in the precipitation

 $Pb^{2+}(aq) + 2 I^{-}(aq) \rightarrow PbI_{2}(s)$ 





#### **Summary of Precipitation Reactions**

- · Soluble ionic compounds dissociate in water.
- · Some ionic compounds are insoluble in water.
- · Solubility rules predict the solubility of compounds.
- Precipitation reaction: two solutions combine to produce an insoluble product.
- · We describe reactions in solution using
  - molecular equations
  - complete ionic equations
  - net ionic equations

# Reactions in Aqueous Solution

acids compounds that produce H+ ions in aqueous solution

# TABLE 6.4 Common Acids

| Formula                                       | Name              |  |  |  |
|-----------------------------------------------|-------------------|--|--|--|
| HF                                            | Hydrofluoric acid |  |  |  |
| HCI                                           | Hydrochloric acid |  |  |  |
| HBr                                           | Hydrobromic acid  |  |  |  |
| HI                                            | Hydroiodic acid   |  |  |  |
| H <sub>2</sub> CO <sub>3</sub>                | Carbonic acid     |  |  |  |
| HNO <sub>3</sub>                              | Nitric acid       |  |  |  |
| HNO <sub>2</sub>                              | Nitrous acid      |  |  |  |
| H <sub>2</sub> SO <sub>4</sub>                | Sulfuric acid     |  |  |  |
| H <sub>3</sub> PO <sub>4</sub>                | Phosphoric acid   |  |  |  |
| $\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}$ | Acetic acid       |  |  |  |

- $\mathsf{HCl}_{(aq)} \rightarrow \mathsf{H}^+_{(aq)} + \mathsf{Cl}^-_{(aq)}$
- $\mathsf{HNO}_3(\mathit{aq}) \rightarrow \mathsf{H^+}(\mathit{aq}) + \mathsf{NO}_3^-(\mathit{aq})$

# **Reactions in Aqueous Solution, Continued**

 ${\bf bases}$   $% (M_{\rm c})$  compounds that produce OH- ions in aqueous solution

#### NaOH (s) $\rightarrow$ Na<sup>+</sup> (aq) + OH<sup>-</sup> (aq)

| TABLE 6.5 Common Hydroxide Base |                     |  |
|---------------------------------|---------------------|--|
| Formula                         | Name                |  |
| Li <mark>OH</mark>              | Lithium hydroxide   |  |
| Na <mark>OH</mark>              | Sodium hydroxide    |  |
| KOH                             | Potassium hydroxide |  |
| Ba(OH) <sub>2</sub>             | Barium hydroxide    |  |

## **Neutralization Reactions**

Acids and bases undergo neutralization reactions.

## $\mathrm{H^{+}}\left(aq\right) + \mathrm{OH^{-}}\left(aq\right) \rightarrow \mathrm{H_{2}O}\left(l\right)$

## acid + base → water + salt

Ex.: hydrochloric acid reacts with sodium hydroxide

HCl (aq) + NaOH (aq) → H<sub>2</sub>O (I) + NaCl (aq)

H⁺ (aq) + <mark>Cl⁻ (aq)</mark> + <mark>Na⁺ (aq)</mark> + OH⁻ (aq) → H<sub>2</sub>O (l) + <mark>Na⁺ (aq)</mark> + <mark>Cl⁻ (aq)</mark>

Ex.: nitric acid reacts with lithium hydroxide

 $\frac{\text{HNO}_{3}(aq) + \text{LiOH}(aq) \rightarrow \text{H}_{2}\text{O}(l) + \text{LiNO}_{3}(aq)}{a \text{ "salt"}}$ 

# **Neutralization Reactions, Continued**

Acid-base neutralization is a **double displacement reaction**.

 $\mathsf{H^{+}}_{(aq)} + \mathsf{OH^{-}}_{(aq)} \rightarrow \mathsf{H_{2}O}_{(l)}$ 

acid + base → water + salt

The formation of water is the driving force for the reaction.

| Acid-Base Reactions Practice                                                                                  |                                  |            |          |                     |   |             |   |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------|------------|----------|---------------------|---|-------------|---|--|
| Write a balanced equation to show the reaction of sulfuric acid with sodium hydroxide. Include phase symbols. |                                  |            |          |                     |   |             |   |  |
|                                                                                                               | acid                             | + base     | <b>→</b> | water               | + | salt        |   |  |
| <u> </u>                                                                                                      | 1 <sub>2</sub> 50 <sub>4</sub> + | 2 NaOH     | → 2      | H <sub>2</sub> 0    | + | Na2504      |   |  |
| H <sub>2</sub> 50 <sub>4</sub>                                                                                | (aq) + 2                         | 2 NaOH (aq | .) → 2   | H <sub>2</sub> 0 () | + | Na2504 (aq) |   |  |
|                                                                                                               |                                  |            |          |                     |   |             | _ |  |