
Introductory Chemistry Chem 103

Chapter 7 – Mass Stoichiometry

Lecture Slides

Formula M	ass and Percent Composition
formula mass	the mass of a single molecule or formula unit.
eman and	"formula weight"

Н 1.01 6 C

12.01 0 16.00

"molecular mass" "molecular weight" Ex.: What is the formula mass of a water molecule?

$$H_2O$$

= 2(1.01 u) + 1(16.00 u)
= 18.02 u

Determining Formula Mass Practice

Potassium carbonate, K₂CO₃, is a common water-softening agent. What is the formula mass of this compound?

 K_2CO_3 $= 2(39.10 \ u) + 1(12.01 \ u) + 3(16.00 \ u)$

=	138.21	ι

Percent Composition

percent composition of one element

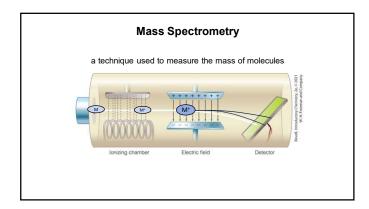
mass of one element x 100% mass of compound

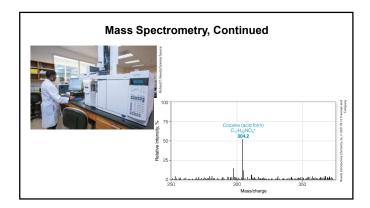
Determining Percent Composition Practice

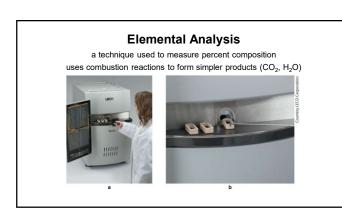
Octane, a component of gasoline, has the molecular formula C_8H_{18} . What is the percent composition of carbon and hydrogen in octane?

mass
$$C = 8(12.01 \text{ u}) = 96.08 \text{ u}$$

mass H = 18(1.01 u) = 18.18 u


mass of $C_8H_{18} = 8(12.01 \text{ u}) + 18(1.01 \text{ u}) = 114.26 \text{ u}$


% carbon =
$$\frac{mass\ carbon}{total\ formula\ mass}$$
 x 100% = $\frac{96.08\ u}{114.26\ u}$ x 100% = 84.09%


% hydrogen =
$$\frac{mass\ hydrogen}{total\ formula\ mass}$$
 \times 100% = $\frac{18.18\ u}{114.26\ u}$ \times 100% = 15.91%

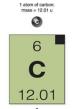
How chemists measure formula mass and percent composition

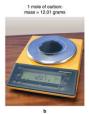
The Mole Concept

1 atomic mass unit (u) = 1.66×10^{-24} g

How do we relate atomic masses to larger amounts?

The Mole Concept, Continued


Avogadro's Number: 6.02×10^{23}


1 dozen: 12 units
1 dozen planets = 12 planets
1 dozen toothpicks = 12 toothpicks
1 dozen donuts = 12 donuts

1 mole: 6.02 × 10²³ units
1 mole of donuts = 6.02 × 10²³ donuts
1 mole of carbon atoms = 6.02 × 10²³ carbon atoms
1 mole of oxygen molecules = 6.02 × 10²³ oxygen molecules

Moles relate atoms to grams, Part 1

- 1 atom of carbon = 12.01 u
- 1 mole of carbon = 12.01 g

Moles relate atoms to grams, Part 2

- 1 atom of carbon = 12.01 u
- 1 mole of carbon = 12.01 g

Mass of carbon: 12.01 u 12.01 grams/mole (molar mass)

Moles relate atoms to grams, Part 3

16.00

What is the formula mass of carbon dioxide?

- 1 molecule of CO₂ = 44.01 u
- 1 mole of CO₂ = 44.01 g

Converting between Grams and Moles

Use molar mass as the conversion factor

How many moles of NaCl are present in a 305-gram sample?

formula mass of NaCl: 58.44 g/mole

58.44 g NaCl = 1 mole NaCl

 $305 \text{ g-NaCl } \times \frac{1 \text{ mole NaCl}}{58.44 \text{ g-NaCl}} = 5.22 \text{ moles NaCl}$

Converting between Grams and Moles, Continued

Use molar mass as the conversion factor

To prepare a solution that contains 1.20 moles of NaCl, how many grams of NaCl are needed?

1.20 moles NaCl x
$$\frac{58.44 \text{ g NaCl}}{1 \text{ mole} \text{ NaCl}} = 70.1 \text{ g NaCl}$$

Converting between Moles and Particles

 6.02×10^{23} particles = 1 mole

How many atoms are in 4.20 moles of gold?

4.20 moles Au x
$$\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mole}} = 2.53 \times 10^{24} \text{ atoms Au}$$

Relating Atoms to Grams

What is the mass in grams of 2.53 \times 10²³ iron atoms?

55.85 g Fe = 1 mole Fe 6.02 x 10²³ atoms = 1 mole

$$2.53 \times 10^{23}$$
 atoms-Fe $\times \frac{1 \text{ mole-Fe}}{6.02 \times 10^{23} \text{ atoms-Fe}} \times \frac{55.85 \text{ g Fe}}{1 \text{ mole-Fe}} = 23.5 \text{ grams Fe}$

Relating Grams to Atoms or Molecules

The Mole Concept in Balanced Equations

Equation Coefficients Can Mean Molecules or Moles $2 \; {\rm H_2} + {\rm O_2} \; \longrightarrow \; 2 \; {\rm H_2O}$

4.0 u

4.0 grams

32.0 grams

36.0 grams

Using the Mole Concept

If 235 grams of iron react in this way...

Fe (s) + 2 HCl (aq)
$$\rightarrow$$
 FeCl₂ (aq) + H₂ (g)
4.27 moles 8.42 moles 4.21 moles

How many moles of iron react?

How many moles of HCI are needed?

Fe: 55.85 g/mol

4.21 mol FE x $\frac{2 \text{ mol HCl}}{1 \text{ mol Fe}}$ = 8.42 mol HCl

How many moles of iron(II) chloride form?

How many grams of iron(II) chloride form?

4.21 mol Fe
$$\times \frac{1 \text{ mol FeCl}_2}{1 \text{ mol Fe}} = 4.21 \text{ mol FeCl}_2$$

4.21 mol Fe x
$$\frac{1 \text{ mol FeCl}_2}{1 \text{ -mol FeCl}_2}$$
 = 4.21 mol FeCl₂ 4.21 mol FeCt₂ x $\frac{126.75 \text{ g FeCl}_2}{1 \text{ mol FeCt}_2}$ = 534 g FeCl₂

Using the Mole Concept, Continued

If 235 grams of iron react in this way...

Fe (s) + 2 HCl (aq)
$$\rightarrow$$
 FeCl₂ (aq) + H₂ (g)

How many moles of iron react?

How many moles of HCI are needed?

How many moles of iron(II) chloride form? How many grams of iron(II) chloride form?

Stoichiometry

Using the amount of one material to predict the amount of another, based on the balanced equation.

Using the Mole Concept, Practice

When magnesium burns, it combines with oxygen to form MgO. If this reaction consumes 3.0 moles of oxygen, how many moles of MgO will form? How many grams of MgO will form?

2 Mg (s) +
$$O_2$$
 (g) \rightarrow 2 MgO (s)
3.0 mol 6.0 mol

3.0
$$mol \cdot \theta_2 \times \frac{2 \ mol \ MgO}{1 \ mol \cdot \theta_2} = 6.0 \ mol \ MgO$$

MgO: 40.30 g/mol

6.0 mol MgO x
$$\frac{40.30 \text{ g MgO}}{1 \text{ mol MgO}}$$
 = 240 g MgO

Using the Mole Concept, More Practice

Sodium metal reacts violently with water. How many moles of H₂ gas form if 11.0 grams of sodium react with water?

2 Na (s) + 2
$$H_2O$$
 (l) \rightarrow 2 NaOH (aq) + H_2 (g) 22.99 $_{9/mol}$

11.0 g-Na
$$\times \frac{1 \text{ mol Na}}{22.99 \text{ g-Na}} = 0.478 \text{ mol Na}$$

mol Na
$$\Rightarrow$$
 mol H₂ 0.478 mol Na x $\frac{1 \text{ mol H}_2}{2 \text{ mol Na}}$ = 0.239 mol H₂

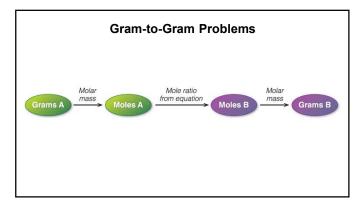
11.0 g-Na x
$$\frac{1 \text{ mol Na}}{22.99 \text{ g-Na}}$$
 x $\frac{1 \text{ mol H}_2}{2 \text{ mol Na}}$ = 0.239 mol H₂

Summary of Stoichiometry Problems

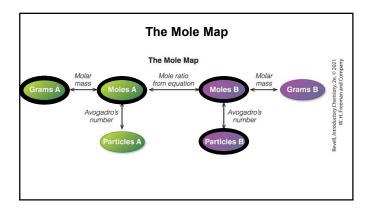
Fe (s) + 2 HCl (aq)
$$\rightarrow$$
 FeCl₂ (aq) + H₂ (g)

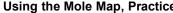
Conversion Factors in Stoichiometry Problems:

Coefficients from Balanced Equation


The Mole Concept in Balanced Equations

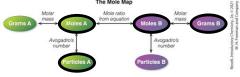
Fe (s) + 2 HCl (aq)
$$\rightarrow$$
 FeCl₂ (aq) + H₂ (g)


Coefficients from Balanced Equation



Gram-to-Gram Problems, Practice When heated with a Bunsen burner, $MgCO_3$ decomposes to MgO and CO_2 , as shown in this equation. If 5.24 g of $MgCO_3$ are heated in this manner, how many grams of MgO can be produced? $MgCO_3 \rightarrow MgO + CO_2$ $g \ MgCO_3 \rightarrow mol \ MgCO_3 \rightarrow mol \ MgCO_3 \rightarrow mol \ MgO \rightarrow g \ MgO$ $5.24 \cdot g \ MgCO_3 \times \frac{1 \cdot mol \cdot MgCO_3}{8^4 \cdot 32 \cdot g \cdot MgCO_3} \times \frac{1 \cdot mol \cdot MgCO_3}{1 \cdot mol \cdot MgCO_3} \times \frac{4 \cdot 0.31 \cdot g \cdot MgO}{1 \cdot mol \cdot MgCO} = 2.51 \cdot g \cdot MgO$ $Moles A \ Moles A \ Moles B \ Moles B \ Moles B \ Moles B$ $Moles B \ Moles B \ Moles B \ Moles B$

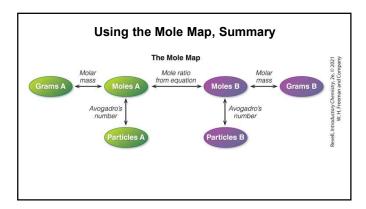
Conversion Type Conversion Factor Grams and moles of one substance Moles and particles of one substance Moles of two different substances Mole ratio from the balanced equation



Using the Mole Map, Practice
Zinc metal reacts with aqueous copper(II) chloride, as shown in this equation. If 3.03×10^{21} atoms of zinc react, how many grams of ZnCl₂ will form? Show the sequence of conversions necessary, then calculate the numerical answer.

$$\mathsf{Zn}\;(s) + \mathsf{CuCl}_2\;(aq) \to \mathsf{ZnCl}_2\;(aq) + \mathsf{Cu}\;(s)$$

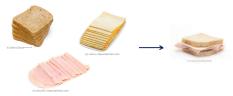
Using the Mole Map, Practice Continued


Zinc metal reacts with aqueous copper(II) chloride, as shown in this equation. If 3.03×10^{21} atoms of zinc react, how many grams of ZnCl₂ will form? Show the sequence of conversions necessary; then calculate the numerical answer.

$$Zn(s) + CuCl_2(aq) \rightarrow ZnCl_2(aq) + Cu(s)$$

Atoms
$$Zn \rightarrow mol \ Zn \rightarrow mol \ ZnCl_2 \rightarrow g \ ZnCl_2$$

$$3.03 \times 10^{21} \text{ atoms 2n } \times \frac{1 \text{ mol 2n}}{6.02 \times 10^{23} \text{ atoms 2n}} \times \frac{1 \text{ mol 2n6t}_2}{1 \text{ mol 2n}} \times \frac{136.28 \text{ g 2nCl}_2}{1 \text{ mol 2n6t}_2}$$



The Mole Concept in Balanced Equations: Limiting Reagents

Fe (s) +
$$2 \text{ HCI (aq)} \rightarrow \text{FeCI}_2 (aq) + \text{H}_2 (g)$$

Calculations with Limiting Reagents

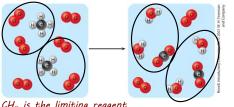
2 slices bread + 1 slice turkey + 1 slice cheese \rightarrow 1 sandwich

Calculations with Limiting Reagents, Practice

If you have 80 slices of bread, 18 slices of turkey, and 15 slices of cheese, how many turkey-and-cheese sandwiches can you make using this recipe?

2 slices bread + 1 slice turkey + 1 slice cheese → 1 sandwich

Bread: 40 sandwiches Turkey: 18 sandwiches Cheese: 15 sandwiches


Limiting Reagent: runs out first

limits the amount that can be produced

Limiting Reagent Reactions Are Common

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

 CH_4 is the limiting reagent. O_2 is the excess reagent.

Limiting Reagents, Practice

Potassium reacts violently with chlorine gas to produce potassium chloride, as shown. If 1.2 moles of potassium are combined with 15 moles of chlorine gas, how many moles of potassium chloride can form? Which reagent is the limiting reagent?

$$2 \text{ K (s)} + \text{Cl}_2(g) \rightarrow 2 \text{ KCl (s)}$$
_{1.2 moles} _{15 moles}

We have enough K to produce 1.2 moles of KCl:

1.2 mol K x $\frac{2 \text{ mol KCI}}{2 \text{ mol K}}$ = 1.2 moles KCI

K is the limiting reagent. 1.2 moles of KCl can be produced.

We have enough ${\it Cl}_2$ to produce 30 moles of KCI:

 $15 \text{ mol } Cl_2 \times \frac{2 \text{ mol } KCl}{1 \text{ mol } Cl_2} = 30 \text{ moles } KCl$

 ${\it Cl}_{\it 2}$ is the excess reagent. There will be Cl_2 left over after the reaction is complete.

Limiting Reagents, More Practice

Uranium reacts with fluorine gas according to this equation. If 30 moles of uranium combine with 75 moles of F_2 , how many moles of UF $_6$ will form?

$$U + 3 F_2 \rightarrow UF_6$$

30 mol
$$U$$
 x $\frac{1 \text{ mol } UF_6}{1 \text{ mol } U}$ = 30 moles UF_6 U is the excess reagent.

75 mol
$$F_2$$
 x $\frac{1 \text{ mol } UF_6}{3 \text{ mol } F_2}$ = 25 moles UF_6

 ${\it F_2}$ is the limiting reagent.

The ICE Method

If you have 80 slices of bread, 18 slices of turkey, and 15 slices of cheese, how many turkey-and-cheese sandwiches can you make using this recipe?

If you make all of the sandwiches, what will be left over?

nitial	80	18	15	0
Change	-30	-15	<i>-15</i>	+15
End	50	3	0	15

The ICE Method Practice

If 15 moles of HCl and 20 moles of NaOH are combined, how many moles of each species will be present after the reaction is complete?

$$HCI + NaOH \rightarrow NaCI + H_2O$$

nitial	15 mol	20 mol	O mol	0 m
C_{hange}	-15 mol	-15 mol	+15 mol	+15 ma
E_{nd}	O mol	5 mol	15 mol	15 ma

Summary of Limiting Reagents

- <u>Limiting Reagent</u>: Completely consumed; limits the amount of product formed.
 - The reagent that forms the least amount of product is the limiting reagent.
- Excess Reagent: Not completely consumed; reagent will be left over after the reaction is complete.
- <u>ICE method</u>: Can be used to determine the amounts of all reactants and products present after a reaction.

Theoretical and Percent Yield

- Theoretical Yield: The amount of a product that can form, based on the balanced equation.
- Actual Yield: The amount actually obtained.
- Percent Yield: The percentage of the theoretical yield that was obtained.

Why is the Actual Yield so Low?

- · Material sticks to container walls
- Unwanted side products
- Product lost during purification

1	5
ㅗ	J

Percent Yield Practice

A chemist runs a reaction in which the theoretical yield is 240 grams. However, he is only able to isolate 180 grams. What is the percent yield for this reaction?

% yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$
$$= \frac{180 \text{ g}}{240 \text{ g}} \times 100\% = 75\%$$

Percent Yield, More Practice

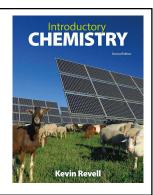
Sulfur hexafluoride, ${\sf SF_6}$, is widely used in the power industry. It is produced through this reaction:

$$S(s) + 3F_2(g) \rightarrow SF_6(g)$$

A manufacturer reacts 120.0 kilograms of sulfur with excess fluorine gas. What mass of SF_6 is theoretically possible for this conversion? After the reaction is complete, the manufacturer isolates 480.2 kilograms of SF_6 . What was the percent yield for this process?

$$g \stackrel{f}{\rightarrow} mol \stackrel{g}{\rightarrow} mol \stackrel{g}{\rightarrow} g \stackrel{g}{\rightarrow} F_6$$

$$120,000 \text{ g-5-x} \times \frac{1 \text{ mot-5}}{32.06 \text{ g-5}} \times \frac{1 \text{ mot-5}F_6}{1 \text{ mot-5}} \times \frac{146.06 \text{ g-5}F_6}{1 \text{ mot-5}F_6} = 546,700 \text{ g-5}F_6$$


$$= 546.7 \text{ kg-5}F_6$$

% yield =
$$\frac{480.2 \text{ kg}}{546.7 \text{ kg}} \times 100\% = 87.84\%$$

Introductory Chemistry Chem 103

Chapter 8 – Energy

Lecture Slides

_	-
1	c

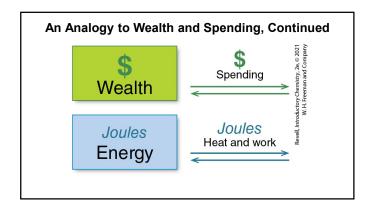
Energy, Work, and Heat

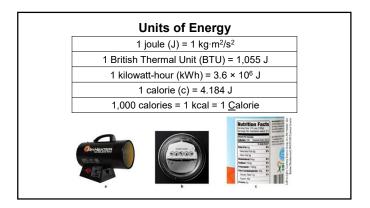
Thermodynamics: the study of energy and temperature changes *Thermochemistry:* energy changes in chemical reactions

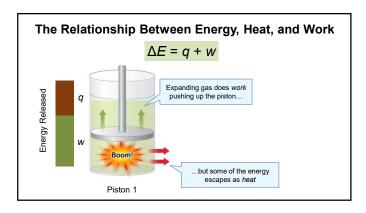
Energy: the ability to do work

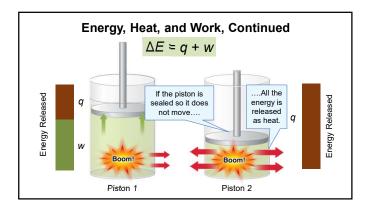
Forms of energy:

potential energy: stored energy
kinetic energy: energy of motion

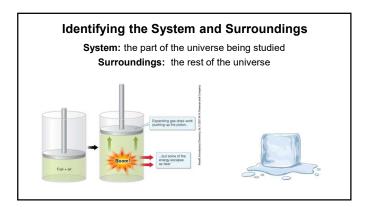

Types of energy changes:

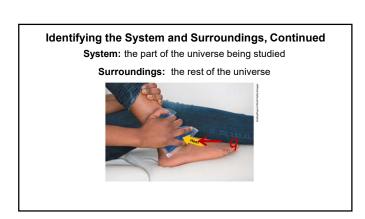

heat: the transfer of kinetic energy


work: the transfer of energy from one form to another.


An Analogy to Wealth and Spending Wealth Spending Spending

1	7
_	•



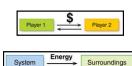

Energy, Heat, and Work Practice

A small sample of propane burns, producing carbon dioxide and water vapor. As the hot gas mixture expands, it releases 20.0 kJ of heat, and does 31.0 kJ of work pushing against a piston. What is the total amount of energy released in this reaction?

Energy released =
$$q + w$$

= 20.0 kJ + 31.0 kJ
= 51.0 kJ

Endothermic and Exothermic Changes $2 C_8 H_{18} (t) + 25 O_2 (g) \rightarrow 16 CO_2 (g) + 18 H_2O (g) + energy$ exothermic change releases energy energy + $H_2O (s) \rightarrow H_2O (t)$ endothermic change absorbs energy



The Law of Conservation of Energy

Energy cannot be created or destroyed.

$$\Delta E_{\text{system}} = -\Delta E_{\text{surroundings}}$$

The Law of Conservation of Energy Practice

A chemical reaction releases 200 J of heat energy to its surroundings. Write this change of energy for the system (the chemical reaction), and for the surroundings.

System: $\Delta E = -200 J$

Surroundings: $\Delta E = +200 \text{ J}$

Summary of Energy Changes

- · Energy changes: work and heat
 - System
 - Surroundings
 - Exothermic reaction: system releases heat
 - Endothermic reaction: system absorbs heat
- Energy is not created or destroyed in chemical reactions.

Heat Energy and Temperature

Heat The <u>total</u> kinetic energy transferred from one substance or object to another. **Temperature** The <u>average</u> kinetic energy of the particles in a substance.

Specific Heat and Heat Capacity

1 kg water

1,000 calories of heat energy

Temp ↑ 1.0 °C

1 kg iron of he

1,000 calories of heat energy

ergy ↑ 9.3 °C

Specific Heat

Specific heat: The amount of heat required to raise the temperature of 1 gram of material by 1 °C.

$$specific \ heat \ = \frac{heat}{(mass) \times (change \ in \ temperature)}$$

$$s = \frac{q}{m\Lambda T}$$

 $q = ms\Delta T$

Different Materials have Different Specific Heats

TABLE 8.2 Specific Heats for Several Materials

	Material	Specific Heat (J/g -°C)
Gas	Air (dry)	1.01
Liquid	Water (liquid)	4.184
	Ethanol	2.597
	Oil (petroleum)	1.74
	Gasoline	2.2
Solid	Glass (quartz)	0.70
	Concrete	0.880
	Ice	2.10
	Sand	0.799
	Aluminum	0.897
	Chromium	0.449
	Gold	0.129
	Iron	0.449
	Lead	0.130
	Nickel	0.444
	Zinc	0.388
	Steel	0.50

Specific Heat Calculations Practice

How many kilojoules of heat are required to raise the temperature of 120.0 grams of water by 5.0 °C?

 $q = ms\Delta T$

= (120.0 g)(4.184 J/(g%))(5.0 %)

= 2,500 J

= 2.5 kJ

Comparing Specific Heat and Heat Capacity specific heat, s The amount of heat required The amount of heat

specific heat, s
The amount of heat required to raise 1 g by 1 °C.

specific heat
$$=\frac{q}{m\Delta T}$$

$$s = \frac{q}{m\Delta T}$$

 $q=ms\Delta T$

required to raise an object by 1 °C.

heat capacity
$$=\frac{q}{\Delta T}$$

$$C = \frac{q}{\Delta T}$$

 $q = C\Delta T$

Heat Capacity Calculations Practice

When filled with water, a large reaction vessel in a chemical plant has a heat capacity of 5.41×10^5 kJ/°C. How many kJ of heat are required to heat this entire vessel from 25.0 °C to 48.2 °C?

$$\Delta T = T_{final} - T_{initial}$$
= 48.2 °C - 25.0 °C = 23.2 °C
$$q = C\Delta T$$
= (5.41 × 10⁵ kJ/²e)(23.2 ²e)
= 1.26 × 10⁷ kJ

Calorimetry

Calorimetry experiments – measure the flow of heat

coffee cup calorimetry

bomb calorimetry

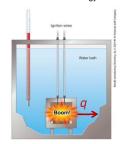
Coffe	ee-Cup Calorimetry
	$q_{\text{water}} = -q_{\text{metal}}$ $q = ms\Delta T$ $mass \rightarrow \text{specific heat}$ $m_{\text{w}} s_{\text{w}} \Delta T_{\text{w}} = -m_{\text{m}} s_{\text{m}} \Delta T_{\text{m}}$ $s_{\text{m}} = -\frac{m_{\text{w}} s_{\text{w}} \Delta T_{\text{w}}}{m_{\text{m}} \Delta T_{\text{w}}}$

Coffee-cup Calorimetry Calculations Practice
A chemist heats a 26.0-g sample of an unknown metal to 100.0 °C, then places it
in a coffee-cup calorimeter containing 52.1 g of water at an initial temperature of 20.0 °C. After some time, both the metal and water reach an equal temperature of 24.0 °C. What is the specific heat of the metal? ($s_w = 4.184 \text{ J/g} \cdot ^{\circ}\text{C}$)

$$\begin{array}{lll} s_{w} = 4.184 \ J/g^{\circ}C & q_{water} = -q_{metal} \\ m_{w} = 52.1 \ g & s_{m} = 26.0 \ g & s_{m} = \frac{-m_{w}s_{w}\Delta T_{w}}{m_{m}\Delta T_{m}} \\ & = 24.0 \ ^{\circ}C - 100.0 \ ^{\circ}C & s_{m} = \frac{-(52.1 + 3)(4.184 \ J/(p^{\circ}C))(4.0 \ ^{\circ}C)}{(26.0 \ g)(-76.0 \ ^{\circ}C)} \\ & = 4.0 \ ^{\circ}C & s_{m} = 0.44 \ J/g^{\circ}C & s_{m} = 0.44 \ J/g^{\circ$$

Coffee-cup Calorimetry Calculations, Continued

heat + NH₄Cl(s) → NH₄Cl(aq) $q_{\text{solid}} = -q_{\text{aq}}$ $q = ms\Delta T$


Coffee-cup Calorimetry, More Practice

A 10.4-gram sample of NH₄Cl was combined with 100.0 grams of water in a coffee-cup calorimeter, causing the water temperature to decrease by 6.20 °C. Based on this, how much heat energy was required to dissolve the sample of NH₄Cl? Calculate the heat of solution for NH₄Cl in kJ/mol.

$$\begin{array}{lll} m_{aq} = 10.4 \ g & 4 \ 100.0 \ g & 4_{solid} = -m_{aq} s_{aq} \Delta T_{aq} \\ & = 110.4 \ g & 4_{solid} = -(110.4 \ g)(4.184 \ J/(g \cdot 2c)(-6.20 \cdot 2c) \\ s_{aq} = 4.184 \ J/g \cdot c & = 2.860 \ J = 2.86 \ kJ \\ \Delta T_{aq} = -6.20 \cdot c & = 2.860 \ J = 2.86 \ kJ \\ & 10.4 \ g \ NH_{q}CI \ x \ \frac{1}{53.49} \ \frac{1}{g} \ NH_{q}CI \ = 0.194 \ moles \ NH_{q}CI \\ & Heat \ of \ solution \ (NH_{q}CI) = \frac{2.86 \ kJ}{0.194 \ mol} \ \frac{1}{2} \$$

Bomb Calorimetry

measures energy content (heats of reaction) in food and fuels

 $q = C\Delta T$

Bomb Calorimetry Calculations Practice

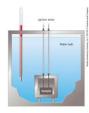
A chemist places a 20.0-g sample of ethanol inside a bomb calorimeter with a known heat capacity of 28.72 kJ/°C. When the ethanol ignites, the temperature of the calorimeter rises from 22.04 °C to 42.74 °C. How much heat did the ethanol release? Calculate the energy released in kilojoules per gram of ethanol.

 $\Delta T = 20.70 \, ^{\circ}C$ $q = C\Delta T$ q = (28.72 kJ/%)(20.70%) C = 28.72 kJ/°C = 594.5 kJ $\frac{594.5 \text{ kJ}}{20.0 \text{ g}} = 29.7 \text{ kJ/g}$

Heat Energy and Chemical Reactions

Chemical reactions involve changes in energy.

The energy of a reaction is an extensive property.



Fuel Value

Fuel value The amount of energy that can be produced by the combustion of a material

TABLE 8.3 Fuel Values for

Fuel	Fuel Value (kJ/g)
Methane	55.5
Natural gas	54.0
Propane	50.3
Butane	49.5
Gasoline	46.5
Anthracite coal	34.6
Ethanol	29.7
Wood (oak) 18.9	

3210 cu. (00cu 101011, 1 E. CHC 11033, 2012).

Reaction Enthalpy, ΔH_{rxn}

Reaction enthalpy The amount of heat energy absorbed or released in a chemical reaction at constant pressure.

$$C_2H_6O + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

$$\Delta H_{\rm rxn} = -1,368 \text{ kJ}$$

exothermic)

	-1,3	68	kJ
1	mol	Co	H _° O

Reaction Enthalpy Calculations Practice

How much heat will be released by the combustion of 789.0 g of ethanol, C₂H₆O?

$$C_2H_6O + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

$$\Delta H_{\rm rxn}$$
 = -1,368 kJ

$$789.0 - 9 - C_2 H_6 O \times \frac{1 - mole - C_2 H_6 O}{46.08 - 9 - C_2 H_6 O} \times \frac{-1,368 \text{ kJ}}{1 - mole - C_2 H_6 O} = -2.342 \times 10^4 \text{ kJ}$$

 $(2.342 \times 10^4 \text{ kJ of heat energy released})$

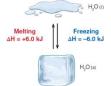
Reaction Enthalpy Calculations, More Practice

Many manufacturers produce hydrogen gas from methane gas, as shown in the reaction below. This reaction is endothermic, with a ΔH_{rxn} = 206.1 kJ. How much heat energy is required to produce 1.00 kg of hydrogen gas?

$$CH_{4}(g) + H_{2}O(g) \rightarrow CO(g) + 3 H_{2}(g)$$
 $\Delta H_{rxn} = 206.1 \text{ kJ}$

$$\Delta H_{\rm rxn} = 206.1 \, {\rm kJ}$$

$$1.00 \text{ kg } \frac{H_2}{1} \times \frac{1,000 \text{ g}}{1 \text{ kg}} \times \frac{1 \text{ mol } H_2}{2.02 \text{ g} \cdot H_2} \times \frac{206.1 \text{ kJ}}{3 \text{ mol } H_2} = 3.40 \times 10^4 \text{ kJ}$$


Physical Changes Involve Enthalpy Changes

Melting:

 $H_2O(s) \rightarrow H_2O(l)$ $\Delta H = 44.0 \text{ kJ}$

Freezing:

 $H_2O(I) \to H_2O(s)$ $\Delta H = -44.0 \text{ kJ}$

Summary of Energy

Reaction energy is an extensive property.

<u>Fuel value</u> is the energy released in a combustion reaction.

The reaction enthalpy relates heat released in a reaction to the balanced equation.