
Introductory Chemistry Chem 103

Chapter 7 – Mass Stoichiometry

Lecture Slides

Determining Formula Mass Practice

Potassium carbonate, K_2CO_3 , is a common water-softening agent. What is the formula mass of this compound?

16.00

$$K_2CO_3$$

= 2(39.10 u) + 1(12.01 u) + 3(16.00 u)
= 138.21 u

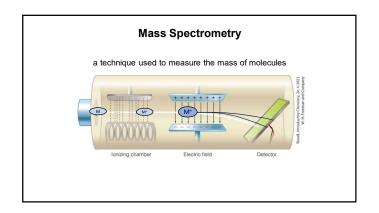
Percent Composition

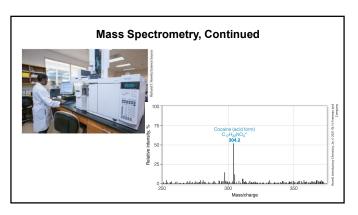
percent composition of one element

mass of one element x 100%

Determining Percent Composition Practice

Octane, a component of gasoline, has the molecular formula C_8H_{18} . What is the percent composition of carbon and hydrogen in octane?


mass
$$C = 8(12.01 \ u) = 96.08 \ u$$
mass $H = 18(1.01 \ u) = 18.18 \ u$
mass of $C_8H_{18} = 8(12.01 \ u) + 18(1.01 \ u) = 114.26 \ u$


$$\% \ carbon = \frac{mass \ carbon}{total \ formula \ mass} \quad x \quad 100\% = \frac{96.08 \ u}{114.26 \ u} \quad x \quad 100\% = 84.09\%$$

$$\% \ hydrogen = \frac{mass \ hydrogen}{total \ formula \ mass} \quad x \quad 100\% = \frac{18.18 \ u}{114.26 \ u} \quad x \quad 100\% = 15.91\%$$

How chemists measure formula mass and percent composition

Elemental Analysis

a technique used to measure percent composition uses combustion reactions to form simpler products (CO $_2$, H $_2$ O)

The Mole Concept

1 atomic mass unit (u) = 1.66×10^{-24} g

How do we relate atomic masses to larger amounts?

The Mole Concept, Continued

Avogadro's Number: 6.02 × 10²³

1 dozen: 12 units 1 dozen planets = 12 planets 1 dozen toothpicks = 12 toothpicks 1 dozen donuts = 12 donuts

1 mole: 6.02 × 10²³ units 1 mole of donuts = 6.02 × 10²³ donuts 1 mole of carbon atoms = 6.02 × 10²³ carbon atoms

1 mole of carbon atoms = 6.02 × 10²³ carbon atoms

1 mole of oxygen molecules = 6.02 × 10²³ oxygen molecules

Moles relate atoms to grams, Part 1 • 1 atom of carbon = 12.01 u • 1 mole of carbon = 12.01 g 1 atom of carbon: mass = 12.01 grams 1 mole of carbon: mass = 12.01 grams 1 mole of carbon: mass = 12.01 grams 6 C 12.01 a b

Moles relate atoms to grams, Part 2

- 1 atom of carbon = 12.01 u
- 1 mole of carbon = 12.01 g

Mass of carbon: 12.01 u 12.01 grams/mole (molar mass)

Moles relate atoms to grams, Part 3

6 C 12.01

16.00

What is the formula mass of carbon dioxide?

- 1 molecule of CO₂ = 44.01 u
- 1 mole of CO₂ = 44.01 g

Converting between Grams and Moles

Use molar mass as the conversion factor

How many moles of NaCl are present in a 305-gram sample?

formula mass of NaCl: 58.44 g/mole

58.44 g NaCl = 1 mole NaCl

 $305 \text{ g-NaCl } \times \frac{1 \text{ mole NaCl}}{58.44 \text{ g-NaCl}} = 5.22 \text{ moles NaCl}$

Converting between Grams and Moles, Continued

Use molar mass as the conversion factor

To prepare a solution that contains 1.20 moles of NaCl, how many grams of NaCl are needed?

1.20 moles NaCl x
$$\frac{58.44 \text{ g NaCl}}{1 \text{ mole NaCl}} = 70.1 \text{ g NaCl}$$

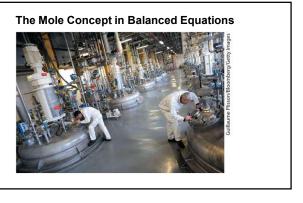
Converting between Moles and Particles

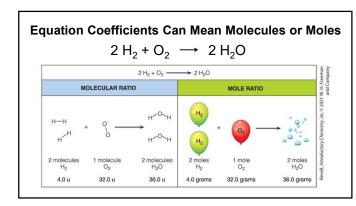
 6.02×10^{23} particles = 1 mole

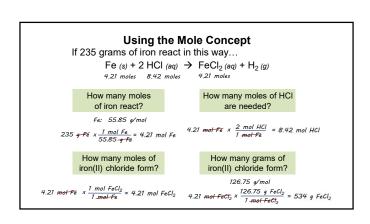
How many atoms are in 4.20 moles of gold?

4.20 moles Au x $\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mole}} = 2.53 \times 10^{24} \text{ atoms Au}$

Relating Atoms to Grams

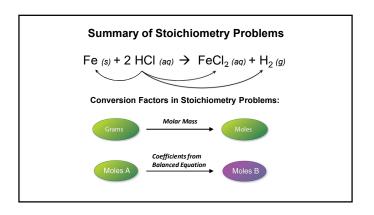

What is the mass in grams of 2.53 \times 10²³ iron atoms?

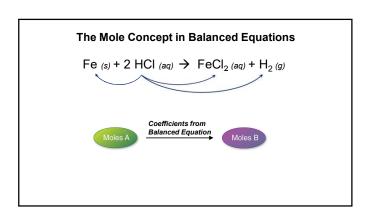

55.85 g Fe = 1 mole Fe 6.02 x 10²³ atoms = 1 mole

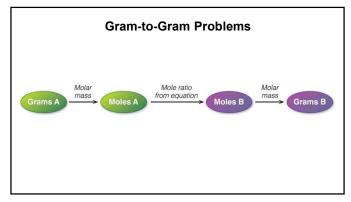


2.53 x
$$10^{23}$$
 atoms Fe x $\frac{1 \text{ mole-Fe}}{6.02 \times 10^{23} \text{ atoms-Fe}}$ x $\frac{55.85 \text{ g Fe}}{1 \text{ mole-Fe}}$ = 23.5 grams Fe

Relating Grams to Atoms or Molecules Avogadros number Atoms or Molecules

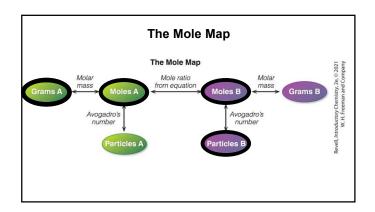


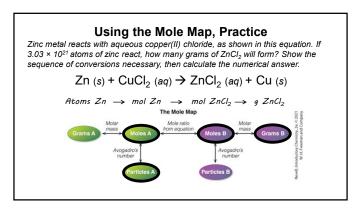


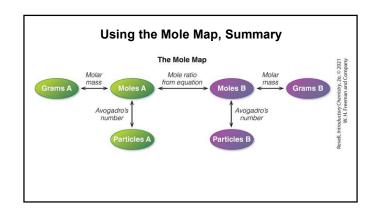

Using the Mole Concept, Continued If 235 grams of iron react in this way... Fe (s) + 2 HCl (aq) → FeCl₂ (aq) + H₂ (g) How many moles of iron react? How many moles of iron(II) chloride form? How many grams of iron(II) chloride form? Stoichiometry Using the amount of one material to predict the amount of another, based on the balanced equation.

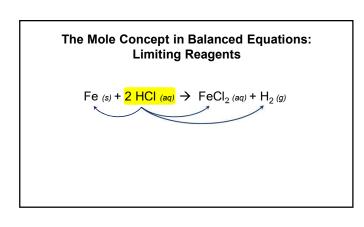
Using the Mole Concept, Practice When magnesium burns, it combines with oxygen to form MgO. If this reaction consumes 3.0 moles of oxygen, how many moles of MgO will form? How many grams of MgO will form? 2 Mg (s) + O_2 (g) \Rightarrow 2 MgO (s) 3.0 mol 6.0 mol 3.0 mol O_2 x O_2 mol O_2 mol O_3 mol O_4 mol O_4 = 6.0 mol MgO MgO: 40.30 g/mol 6.0 mol MgO x O_4 $O_$

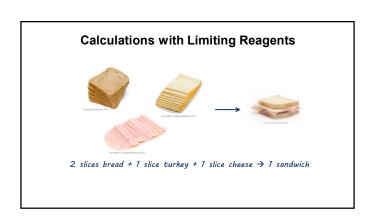
Using the Mole Concept, More Practice Sodium metal reacts violently with water. How many moles of H_2 gas form if 11.0 grams of sodium react with water? 2 Na (s) + 2 H₂O (l) \rightarrow 2 NaOH (aq) + H₂ (g) 2 Na \Rightarrow mol Na 71.0 g-Na \rightarrow $\frac{1}{22.99} \frac{mol \ Na}{g-Na} = 0.478 \ mol \ Na$ mol Na \Rightarrow mol H₂ 0.478 mel-Na \rightarrow $\frac{1}{2} \frac{mol \ H_2}{2mel-Na} = 0.239 \ mol \ H_2$ 11.0 g-Na \rightarrow $\frac{1}{22.99} \frac{mol \ Na}{g-Na} \times \frac{1}{2} \frac{mol \ H_2}{2mel-Na} = 0.239 \ mol \ H_2$








Conversion Type	Conversion Factor
Grams and moles of one substance	Molar Mass
Moles and particles of one substance	Avogadro's number
Moles of two different substances	Mole ratio from the balanced equation



Using the Mole Map, Practice Continued Zinc metal reacts with aqueous copper(II) chloride, as shown in this equation. If 3.03×10^{21} atoms of zinc react, how many grams of $ZnCl_2$ will form? Show the sequence of conversions necessary; then calculate the numerical answer. $Zn(s) + CuCl_2(aq) \rightarrow ZnCl_2(aq) + Cu(s)$ $Atoms Zn \rightarrow mol Zn \rightarrow mol ZnCl_2 \rightarrow g ZnCl_2$ $3.03 \times 10^{21} \text{ atoms } Zn \times \frac{1 \text{ mol } Zn}{6.02 \times 10^{23} \text{ atoms } Zn} \times \frac{1 \text{ mol } ZnCl_2}{1 \text{ mol } ZnCl_2} \times \frac{136.28 \text{ g } ZnCl_2}{1 \text{ mol } ZnCl_2}$ $= 0.686 \text{ g } ZnCl_2$

Calculations with Limiting Reagents, Practice

If you have 80 slices of bread, 18 slices of turkey, and 15 slices of cheese, how many turkey-and-cheese sandwiches can you make using this recipe?

2 slices bread + 1 slice turkey + 1 slice cheese → 1 sandwich

Bread: 40 sandwiches Turkey: 18 sandwiches Cheese: 15 sandwiches

Limiting Reagent: runs out first

limits the amount that can be produced

Limiting Reagent Reactions Are Common $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$ CH4 is the limiting reagent. O_2 is the excess reagent.

Limiting Reagents, Practice
Potassium reacts violently with chlorine gas to produce potassium chloride, as shown. If 1.2 moles of potassium are combined with 15 moles of chlorine gas, how many moles of potassium chloride can form? Which reagent is the limiting reagent?

$$2 \text{ K (s)} + \text{Cl}_2(g) \rightarrow 2 \text{ KCl (s)}$$
_{1.2 moles}
_{15 moles}

We have <mark>enough K to produce 1.2 moles of KCl:</mark> K is the limiting reagent.

1.2 mol K x $\frac{2 \text{ mol KCI}}{2 \text{ mol K}}$ = 1.2 moles KCI

1.2 moles of KCl can be produced.

We have enough ${\it Cl}_2$ to produce 30 moles of KCI:

 $15 \text{ mol } Cl_2 \times \frac{2 \text{ mol } KCl}{1 \text{ mol } Cl_2} = 30 \text{ moles } KCl$

 ${\it Cl}_2$ is the excess reagent. There will be Cl₂ left over after the reaction is complete

Limiting Reagents, More Practice

Uranium reacts with fluorine gas according to this equation. If 30 moles of uranium combine with 75 moles of F_2 , how many moles of UF_6 will form?

$$U + 3 F_2 \rightarrow UF_6$$

30 mol-U x
$$\frac{1 \text{ mol-U}}{1 \text{ mol-U}} = 30 \text{ moles } UF_6$$
 U is the excess reagent.

75 mol
$$F_2$$
 x $\frac{1 \text{ mol } UF_6}{3 \text{ mol } F_2}$ = 25 moles UF_6 F_2 is the limiting reagent.

The ICE Method

If you have 80 slices of bread, 18 slices of turkey, and 15 slices of cheese, how many turkey-and-cheese sandwiches can you make using this recipe?

If you make all of the sandwiches, what will be left over?

Change -30 -15 -15 +15 E_{nd} 50 15

The ICE Method Practice

If 15 moles of HCl and 20 moles of NaOH are combined, how many moles of each species will be present after the reaction is complete?

nitial 15 mol 20 mol O mol O mol Change -15 mol -15 mol +15 mol +15 mol O mol 5 mol 15 mol 15 mol

Summary of Limiting Reagents

- <u>Limiting Reagent</u>: Completely consumed; limits the amount of product formed.
 - The reagent that forms the least amount of product is the limiting reagent.
- Excess Reagent: Not completely consumed; reagent will be left over after the reaction is complete.
- <u>ICE method</u>: Can be used to determine the amounts of all reactants and products present after a reaction.

Theoretical and Percent Yield

- Theoretical Yield: The amount of a product that can form, based on the balanced equation.
- · Actual Yield: The amount actually obtained.
- Percent Yield: The percentage of the theoretical yield that was obtained.

Percent yield =
$$\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100\%$$

Why is the Actual Yield so Low?

- · Material sticks to container walls
- · Unwanted side products
- · Product lost during purification

Percent Yield Practice

A chemist runs a reaction in which the theoretical yield is 240 grams. However, he is only able to isolate 180 grams. What is the percent yield for this reaction?

% yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

$$= \frac{180 \ g}{240 \ g} \times 100\% = 75\%$$

Percent Yield, More Practice

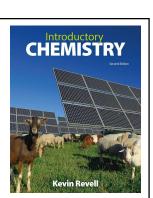
Sulfur hexafluoride, ${\rm SF_6}$, is widely used in the power industry. It is produced through this reaction:

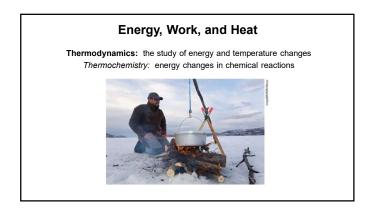
$$S(s) + 3F_2(g) \rightarrow SF_6(g)$$

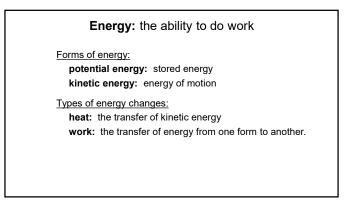
A manufacturer reacts 120.0 kilograms of sulfur with excess fluorine gas. What mass of SF_6 is theoretically possible for this conversion? After the reaction is complete, the manufacturer isolates 480.2 kilograms of SF_6 . What was the percent yield for this process?

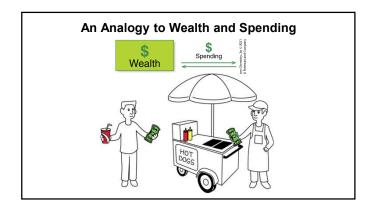
$$g \ S \ \longrightarrow \ mol \ S \ \longrightarrow \ mol \ SF_6 \ \longrightarrow \ g \ SF_6$$

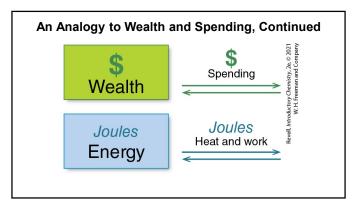
$$120,000 \text{ g-5} \times \frac{1 \text{ mol-5}}{32.06 \text{ g-5}} \times \frac{1 \text{ mol-5F}_6}{1 \text{ mol-5F}_6} \times \frac{146.06 \text{ g-5F}_6}{1 \text{ mol-5F}_6} = 546,700 \text{ g-5F}_6$$

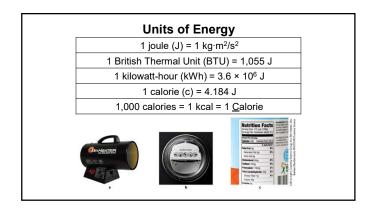

$$= 546.7 \text{ kg-5F}_6$$

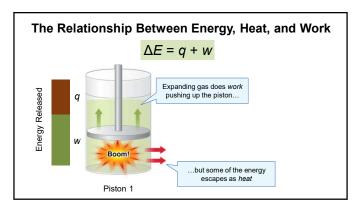

% yield =
$$\frac{480.2 \text{ kg}}{546.7 \text{ kg}} \times 100\% = 87.84\%$$

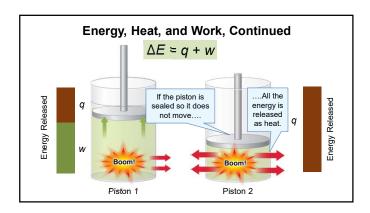

Introductory Chemistry Chem 103

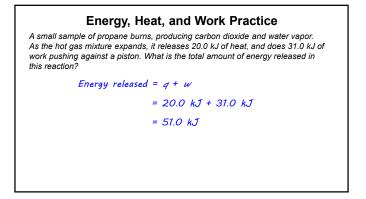

Chapter 8 – Energy

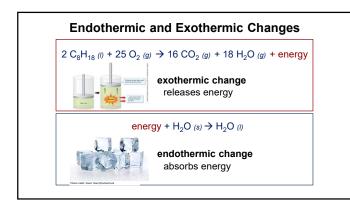

Lecture Slides

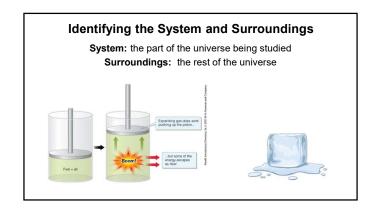


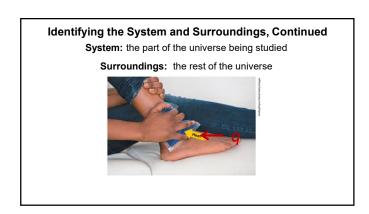


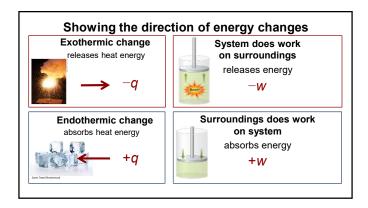












The Law of Conservation of Energy

Energy cannot be created or destroyed.

$$\Delta E_{\text{system}} = -\Delta E_{\text{surroundings}}$$

Surroundings

The Law of Conservation of Energy Practice

A chemical reaction releases 200 J of heat energy to its surroundings. Write this change of energy for the system (the chemical reaction), and for the surroundings.

System:
$$\Delta E = -200 J$$

Surroundings:
$$\Delta E = +200 \text{ J}$$

Summary of Energy Changes

- · Energy changes: work and heat
 - System
 - Surroundings
 - Exothermic reaction: system releases heat
 - Endothermic reaction: system absorbs heat
- Energy is not created or destroyed in chemical reactions.

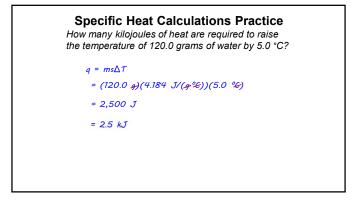
Heat Energy and Temperature

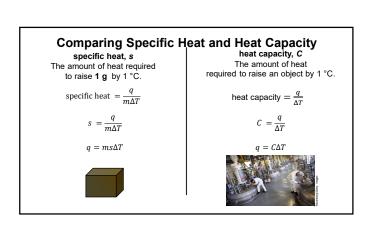
 $\textbf{Heat} \hspace{0.2cm} \textbf{The} \hspace{0.2cm} \underline{\textbf{total}} \hspace{0.2cm} \textbf{kinetic energy transferred from one substance or object to another.}$

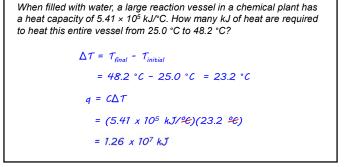
Temperature The average kinetic energy of the particles in a substance.

Specific Heat and Heat Capacity

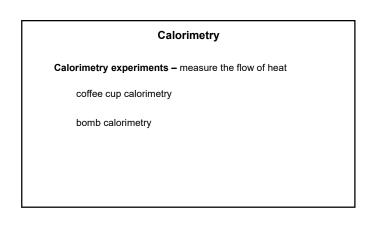
Specific Heat

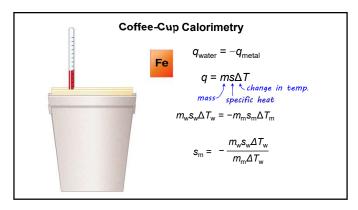

Specific heat: The amount of heat required to raise the temperature of 1 gram of material by 1 °C.

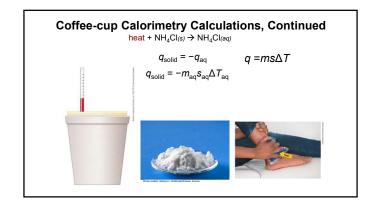

$$specific \ heat \ = \frac{heat}{(mass) \times (change \ in \ temperature)}$$


$$s = \frac{q}{m\Delta T}$$

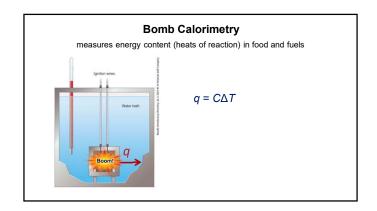
$$q = ms\Delta T$$



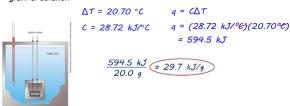


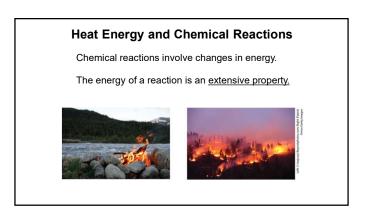

Heat Capacity Calculations Practice

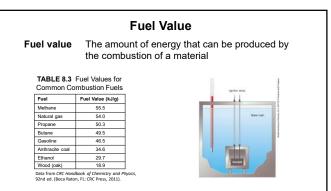
Coffee-cup Calorimetry Calculations Practice
A chemist heats a 26.0-g sample of an unknown metal to 100.0 °C, then places it
in a coffee-cup calorimeter containing 52.1 g of water at an initial temperature of 20.0 °C. After some time, both the metal and water reach an equal temperature of 24.0 °C. What is the specific heat of the metal? ($s_w = 4.184 \text{ J/g} \cdot ^{\circ}\text{C}$)

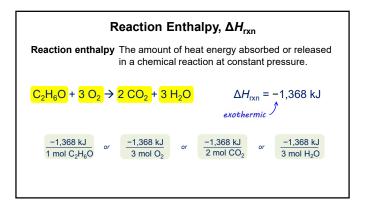

$$\begin{split} s_w &= 4.184 \ J/g^{\circ}C \\ m_w &= 52.1 \ g \\ m_m &= 26.0 \ g \\ \Delta T_m &= T_{final} - T_{initial} \\ &= 24.0 \ ^{\circ}C - 100.0 \ ^{\circ}C \\ &= -76.0 \ ^{\circ}C \\ &= 24.0 \ ^{\circ}C - 20.0 \ ^{\circ}C \\ &= 4.0 \ ^{\circ}C \end{split} \qquad \begin{cases} s_m &= \frac{-m_w s_w \Delta T_w}{m_m \Delta T_m} \\ s_m &= \frac{-(52.1_w)(4.184 \ J/(g^{\circ}G))(4.0 \ ^{\circ}G)}{(26.0 \ g)(-76.0 \ ^{\circ}C)} \end{cases}$$

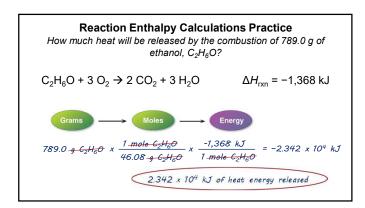
Coffee-cup Calorimetry, More Practice

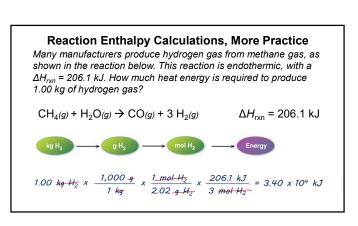

A 10.4-gram sample of NH₄Cl was combined with 100.0 grams of water in a coffee-cup calorimeter, causing the water temperature to decrease by 6.20 °C. Based on this, how much heat energy was required to dissolve the sample of NH₄Cl? Calculate the heat of solution for NH₄Cl in kJ/mol.

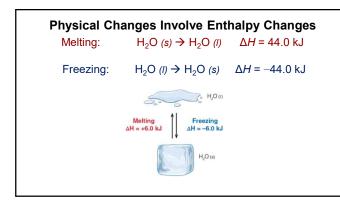

$$\begin{array}{lll} m_{aq} = 10.4 \ g & 4 \ 100.0 \ g & 4_{solid} = -m_{aq} s_{aq} \Delta T_{aq} \\ & = 110.4 \ g & 4_{solid} = -(110.4 \ g)(4.184 \ J/(g \%)(-6.20 \%) \\ s_{aq} = 4.184 \ J/g ^{\circ} C & = 2.860 \ J = 2.86 \ kJ \\ \Delta T_{aq} = -6.20 ^{\circ} C & = 2.860 \ J = 2.86 \ kJ \\ & 10.4 \ g \ \Delta H_{qCl} \times \frac{1 \ mole \ NH_{qCl}}{53.49 \ g \ NH_{qCl}} = 0.194 \ moles \ NH_{qCl} \\ & Heat \ of \ solution \ (NH_{qCl}) = \frac{2.86 \ kJ}{0.194 \ mol} & 74.7 \ kJ/mol \end{array}$$




Bomb Calorimetry Calculations Practice


A chemist places a 20.0-g sample of ethanol inside a bomb calorimeter with a known heat capacity of 28.72 kJ/°C. When the ethanol ignites, the temperature of the calorimeter rises from 22.04 °C to 42.74 °C. How much heat did the ethanol release? Calculate the energy released in kilojoules per gram of ethanol.





Summary of Energy Reaction energy is an extensive property. Fuel value is the energy released in a combustion reaction. The reaction enthalpy relates heat released in a reaction to the balanced equation.