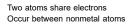

Introductory Chemistry Chem 103


Chapter 9 – Covalent Bonding and Molecules

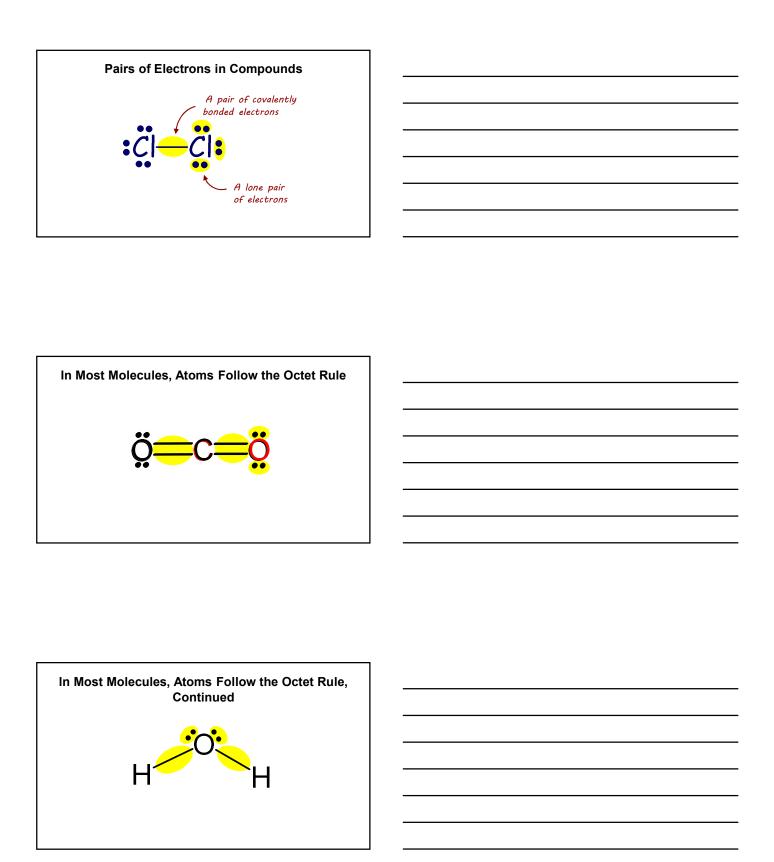
Lecture Slides

Covalent Molecules

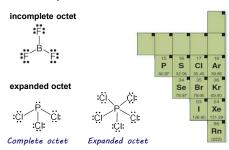
Covalent bonds:

Atoms are stabilized by having 8 electrons in the valence shell

$$\begin{array}{ccc} : \mathring{C}| \cdot & + & \cdot \mathring{C}| : & \xrightarrow{2 \text{ electrons}} & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

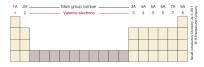

Lewis structures:

Show the arrangement of covalently bonded atoms
Use a dash to represent two shared electrons


Covalent Double and Triple Bonds

Covalent double bonds:

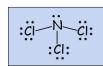
Covalent triple bonds:



Exceptions to the Octet Rule

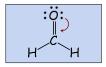
Drawing Lewis Structures

- 1. Add up all the valence electrons.
- 2. Frame the structure.
- 3. Fill octets on outer atoms first.
- 4. Fill the octet on the central atom.
 - any remaining electrons on central atom
 - use double/triple bonds if needed


Drawing Lewis Structures Practice

Draw a Lewis structure for nitrogen trichloride, NCI₃.

= 26 valence electrons



Drawing Lewis Structures, More Practice

Formaldehyde, ${\rm CH_2O}$, is commonly used to manufacture plastics. Draw the Lewis structure for a formaldehyde molecule.

= 12 valence electrons

Molecules and Charge

 polyatomic ions
 groups of atoms with an overall charge

 formal charges
 a method of identifying charged sites

One Electron From Each Bond is Assigned to an Atom

H-H

Calculating Formal Charge Practice

Formal charge = Valence electrons in the neutral atom
$$-$$
 Number of covalent $-$ Number of unshared electrons $-$ Number of unshared electrons $-$ Number of $-$ Number of $-$ Number of unshared electrons $-$ Number of $-$ Number of $-$ Number of $-$ Number of unshared electrons $-$ Number of $-$ Number

Oxygen and Nitrogen Atoms Often Have Formal Charges

Calculating Formal Charge, More Practice

Automotive air bags contain sodium azide, NaN_3 . The Lewis structure for the azide ion (without charges) is shown. Calculate the formal charge on each atom in this structure. What is the overall charge of the azide ion?

$$\begin{array}{c|c}
\ddot{N} & N & \ddot{N} \\
\hline
\ddot{N} & \uparrow & \downarrow \\
5-2-4=-1 & 5-2-4=-1
\end{array}$$

$$\begin{array}{c|c}
\vdots & \vdots & \vdots & \vdots \\
\hline
N & N & \ddot{N} \\
\hline
Azide Ion: N_3^-$$

Drawing Lewis Structures for Polyatomic Ions

- Similar to neutral molecules
- Consider charge when finding the number of valence electrons

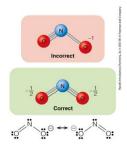
How many valence electrons are in a hydroxide

Lewis Structures for Polyatomic Ions Practice

Draw a Lewis structure for the nitrite ion, NO₂- Show all nonzero formal charges.

= 18 valence electrons

- 1. Sum electrons. 2. Draw framework.
- 3. Fill octets on outer atoms.
- 4. Fill octet on central atom.



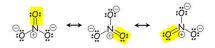
Identifying the Best Lewis Structure

What is the best structure for phosgene, COCl₂?

Resonance Structures

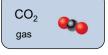
Resonance Structures, Continued

- a set of structures that show how electrons are distributed.
- used when a single Lewis structure is insufficient.


Ions With Resonance Structures Spread Charges Over Multiple Atoms

NO ₃ -	SO ₄ ²⁻
NO ₂ -	CO ₃ ²⁻
PO ₄ 3-	C ₂ H ₂ O ₂ =

Only $2^{\rm nd}$ bonds and lone pairs change in resonance structures.


Using Resonance Structures to Calculate Formal Charge

The nitrate ion (NO_3^-) has three major resonance structures. Draw each structure. Based on these structures, what is the average charge on each oxygen atom?

charge on each oxygen: $-\frac{2}{3}$

Shapes of Molecules

Predicting Molecular Shapes

<u>Valence Shell Electron Pair Repulsion</u>

VSEPR

Predicting Molecular Shapes, Continued

Electronic geometry Arrangement of electrons around the central atom

Molecular geometry Shape caused by the arrangement of atoms

Two Electron Sets: Linear

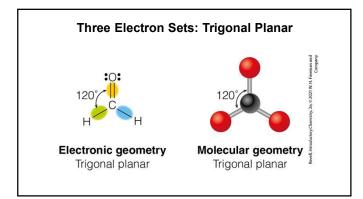
Electronic geometry

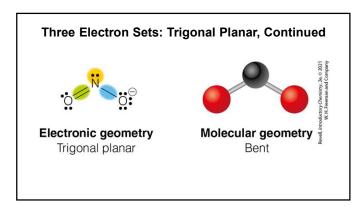
Molecular geometry Linear Linear

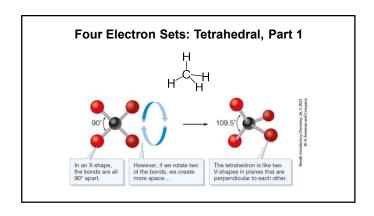
double and triple bonds count as 1 "set"

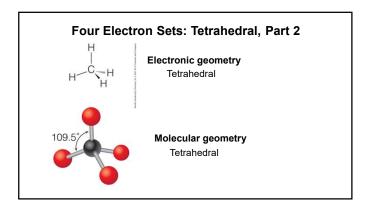
Geometric Stability

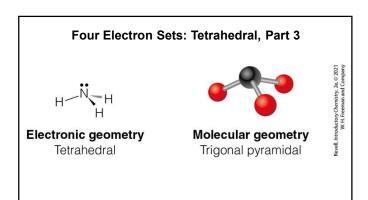
Which geometry is most stable?

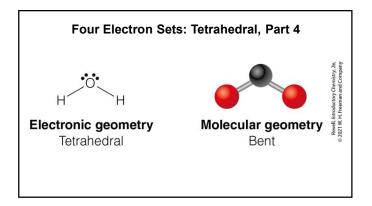


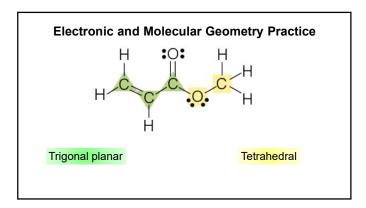


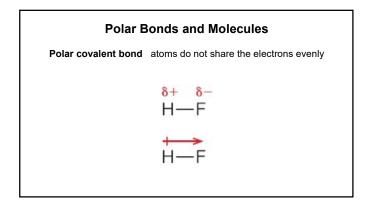


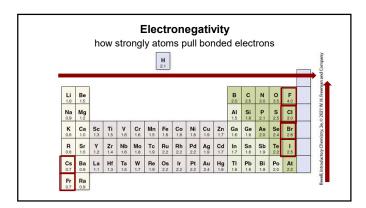

2 sets of electrons: Linear

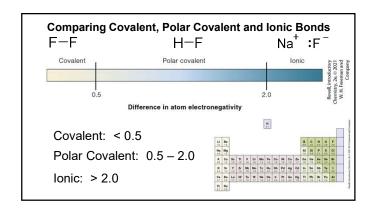


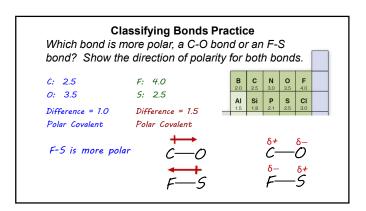


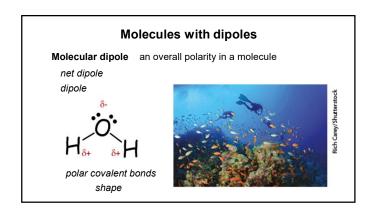


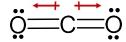




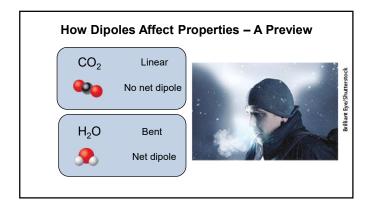

Electronic and Molecular Geometry						
Electron sets	Electronic geometry	Model	Bonding sets	Lone pairs	Molecular geometry	Examples
2	Linear	🕶 💿 पृष्ट	2	0	Linear	ö =c= ö
3	Trigonal Planar		3 2	0 1	Trigonal Planar Bent	:0: н н ю й ;0:
4	Tetrahedral		3	0 1 2	Tetrahedral Trigonal pyramidal	H C H
			2	2	Bent	H0.H

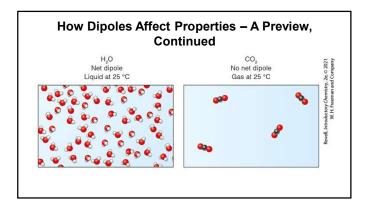

Electronic and Molecu	ılar Geometry, More Practice	
Lithium carbonate is a simple ionic compound that is widely used to treat bipolar disorder. What is the molecular geometry of the carbonate ion?		
:O:	Electronic geometry: Trigonal planar	
:Ö C Ö:	Molecular geometry: Trigonal planar	




An Analogy for Polar Covalent Bonds H-F

Identifying Molecules with a Net Dipole

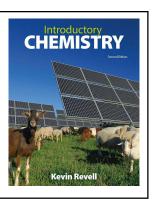

Net Dipole

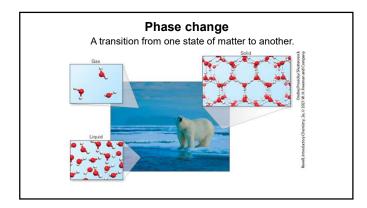

No Net Dipole

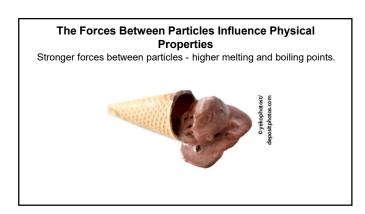
Identifying Molecules with a Net Dipole, Continued

dipole

	Identifying Molecules with a Net Dipole Practice Which of these have a net dipole?				
CH₄	BCI ₃	CH_2F_2			
H CH H	CI CI	H STE			
Non-polar bonds	Polar bonds	Polar bonds			
No dipole	No net dipole	Net dipole H 21			

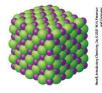



Introductory Chemistry Chem 103


Chapter 10 – Solids, Liquids, Gases

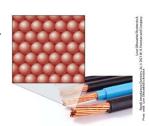
Lecture Slides

Atomic/Molecular Arrangement	Macroscopic Properties
Particles are close together and held in a fixed place.	Definite shape and volume
Particles are close together but move freely past each other.	Definite volume; Adopts the shape of the container.
Particles are far apart and have very little interaction.	Adopts shape and volume of container
	Particles are close together but move freely past each other. Particles are far apart



Solids and Liquids

Ionic Substances

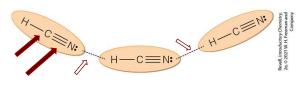

Lattices: rigid frameworks of atoms, molecules or ions.

Compound	Melting Point (°C)
NaCl	801
KCI	770
MgCl ₂	714
CaO	2,572
Al ₂ O ₃	2,072

Metallic Substances

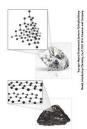
- Form lattices of tightly packed atoms.
- Electrons move easily between atoms.
- Shapes of metals are easily altered.
 - Malleable
 - Ductile

Metallic Substances, Continued



Element	Melting Point (°C)
Lead	327
Aluminum	660
Gold	1,064
Copper	1,085
Iron	1,538

Molecular Substances


Forces $\underline{\text{within}}$ molecules: covalent bonds

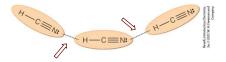
Forces <u>between</u> molecules: intermolecular forces

Covalent Networks and Polymers

covalent networks: lattices of covalent bonds that form giant molecules

Solids and Liquids Summary

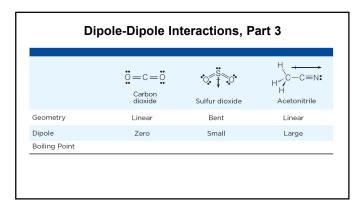
- Ionic Substances
- Metallic Substances


- Molecular Substances
 - Covalent Networks and Polymers

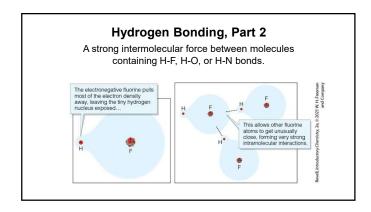
Forces Within and Between Molecules

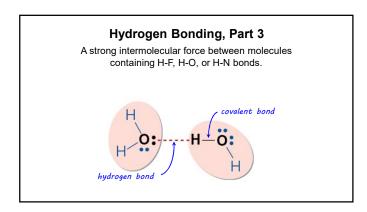
Forces within molecules: covalent bonds

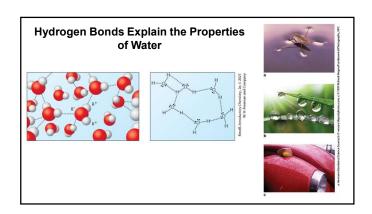
Forces <u>between</u> molecules: intermolecular forces

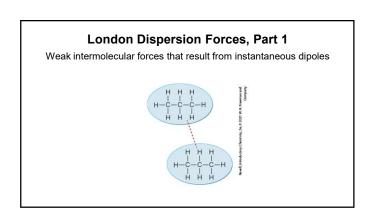

Forces Between Molecules

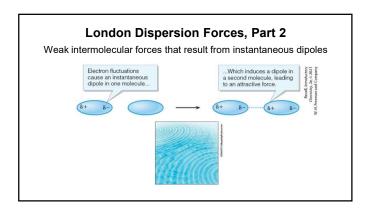
intermolecular forces

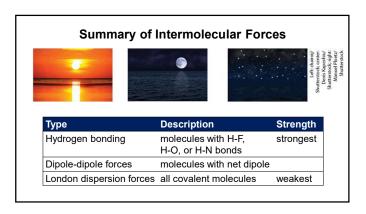

- 1. Dipole-dipole Interactions
- 2. Hydrogen bonds
- 3. Dispersion forces

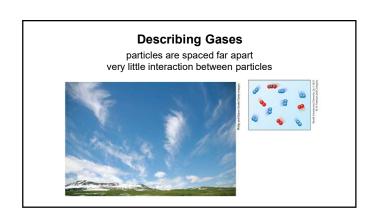

Dipole-Dipole Interactions, Part 1 Attractions between polar covalent molecules: 8+ 8H-CI Revell, Introductory Chemistry, 24, C 2021 W. H. Freeman and Company


Dipole -Dipole Interactions, Part 2 Dipole Higher Melting Point Higher Boiling Point a b




Hydrogen Bonding, Part 1 H—C≡N: Hydrogen Cyanide Water Formula mass 16.0 u 27.0 u 18.0 u Dipole strength* 0 2.98 1.85 Boiling point *These numbers convey the relative size of each dipole.





Ideal Gas

- 1. Volume of particles is much less than container.
- 2. Particles have no attraction for each other.

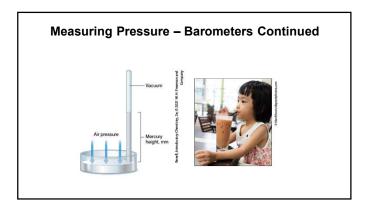
Temperature

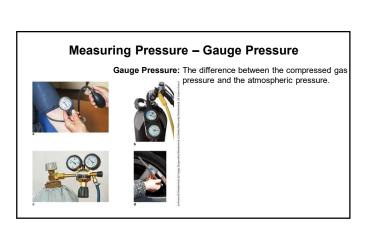
Volume Pressure

Pressure

The force that gases exert on their surroundings.

Force Pressure = Area




Measuring Pressure

Measuring Pressure – Barometers Barometer: a device used to measure atmospheric pressure Millimeters of mercury (mm Hg) 1 mm Hg = 1 torr Average air pressure at sea level: 760 mm Hg 760 torr Standard pressure

Measuring Pressure – Conversion Factors

1 atmosphere (atm) = 760 mm Hg (torr)

1 atm = 14.70 pounds per square inch (psi)

1 atm = 101.3 kilopascals (kPa)

1 atm = 1.013 bar

The Gas Laws, Part 1

Boyle's Law

The pressure and volume of a gas are inversely related.

P↑ V↓

PV = constant

 $P_1V_1 = P_2V_2$

Boyle's Law Practice

A commercial compressor stores 2.8 liters of air at a pressure of 150 psi. If this air is allowed to expand until the pressure is equal to 15 psi (just over atmospheric pressure), what volume will the air occupy?

$$P_1V_1 = P_2V_2$$

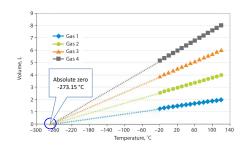
$$V_7 = 2.8 L$$

$$P_1V_1 = P_2V_2$$

$$V_2 = \frac{P_1 V_1}{P_2}$$

$$=\frac{(150 \text{ psi})(2.8 \text{ L})}{(15 \text{ psi})} = 28 \text{ L}$$

Charles's Law


At constant pressure, the volume of a gas is directly proportional to its temperature.

$$T\uparrow$$
 $V\uparrow$

$$V \propto T$$

$$\frac{V}{T}$$
 = constant

Using Charles's Law to Find Absolute Zero

The Kelvin Scale

Absolute zero

-273.15 °C 0 K

kelvin = °C + 273.15

Working to the nearest degree:

 $kelvin = ^{\circ}C + 273$

Solving Problems with Charles's Law

$$\frac{V}{T}$$
 = constant

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Charles's Law Practice

A balloon has a volume of 3.2 liters at room temperature (25 °C). The gas inside the balloon is then heated to 100 °C. What is the new volume of the balloon?

$$V_7 = 3.2 L$$

 $V_2 = ?$

$$T_1 = 25 \% + 273 = 298 \text{ K}$$

$$T_2 = 100 \, \text{°C} + 273 = 373 \, \text{K}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$V_2 = \frac{V_1 T_2}{T_1}$$

29

The Combined Gas Law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

The Combined Gas Law Practice

A gas with a temperature of 280 K, a pressure of 200 kPa, and a volume of 25.8 L is compressed to 15.8 L, causing the pressure to increase to 350 kPa. What is the temperature of the gas under the new conditions?

 $P_1 = 200 \text{ kPa}$

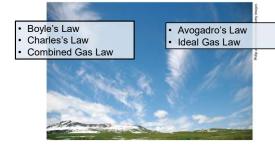
 $V_7 = 25.8 L$

 $T_1 = 280 \text{ K}$

 $P_2 = 350 \text{ kPa}$

 $V_2 = 15.8 L$

 $T_2 = ?$


 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

 $T_2 = \frac{P_2 V_2 T_1}{P_1 V_1}$

 $=\frac{(350-kPa)(15.8-t)(280 \text{ K})}{(220-kPa)(15.8-t)(280 \text{ K})}$

 $= \frac{(200 + Pa)(25.8 + 1)}{(300 \text{ K})}$

The Gas Laws, Part 2

Avogadro's Law

If temperature and pressure are constant, the volume of a gas is proportional to the number of moles of gas present.

 $V \propto n$

at Standard Temperature and Pressure (STP)...

 $T = 0 \, ^{\circ}\text{C} (273 \, \text{K})$ $P = 1.0 \, \text{atm}$

...1 mole of gas occupies 22.4 Liters

The Ideal Gas Law

PV = nRT

- R = 0.0821 L·atm/mol·K
- T must be in kelvins
- P, V units must match gas constant

The Ideal Gas Law Practice

What volume does 1.00 mole of gas occupy at a temperature of 0.00 °C and a pressure of 1.00 atmospheres?

$$PV = nRT$$

 $T = 0.00 \text{ }^{\circ}C$ = 273.15 K

1.00 atm

= 22.4 L

Mixtures of Gases: Partial Pressure

partial pressure: The pressure caused by one gas in a mixture.

Adding up all partial pressures gives the total pressure.

Air: 78% nitrogen 21% oxygen

Partial Pressure Practice

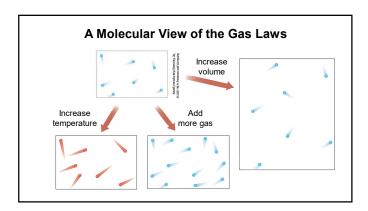
If a 40.0-L cylinder is filled with 5.00 moles of nitrogen, 2.00 moles of oxygen, and 3.00 moles of carbon dioxide at a temperature of 400 K, what is the pressure

3.00 moles of carbon dioxide at a temperature of 400 K, what is the pressure inside the cylinder?
$$P_{N2} = \frac{nRT}{V} = \frac{(5.00 \text{ mol})(0.0821 \text{ L-atm/mol-K})(400 \text{ K})}{40.0 \text{ L}} = 4.11 \text{ atm}$$

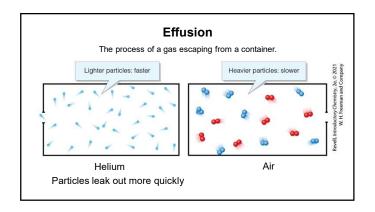
$$P_{N2} = \frac{nRT}{V} = \frac{(2.00 \text{ mol})(0.0821 \text{ L-atm/mol-K})(400 \text{ K})}{40.0 \text{ L}} = 4.11 \text{ atm}$$

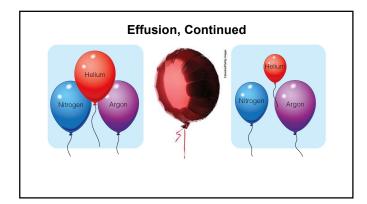
$$P_{02} = \frac{nRT}{V} = \frac{(2.00 \text{ mol})(0.0821 \text{ L-atm/mol-K})(400 \text{ K})}{40.0 \text{ L}} = 1.64 \text{ atm}$$

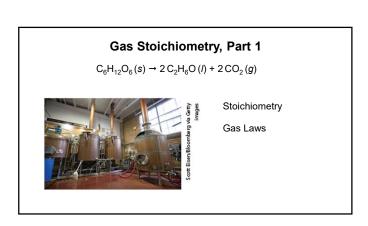
$$P_{CO2} = \frac{nRT}{V} = \frac{(3.00 \text{ mol})(0.0821 \text{ L-atm/mol-K})(400 \text{ K})}{40.0 \text{ L}} = 2.46 \text{ atm}$$

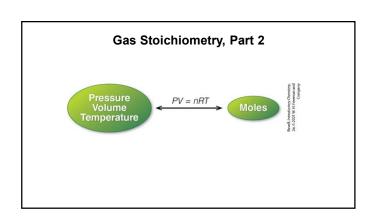

$$P_{Total} = P_{N2} + P_{O2} + P_{CO2}$$

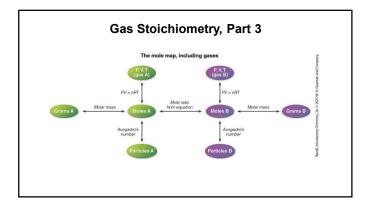
Partial Pressure, More Practice


If a 40.0-L cylinder is filled with 5.00 moles of nitrogen, 2.00 moles of oxygen, and 3.00 moles of carbon dioxide at a temperature of 400 K, what is the pressure inside the cylinder?


 n_{total} = 5.00 moles + 2.00 moles + 3.00 moles = 10.00 moles total


$$P_{total} = \frac{nRT}{V} = \frac{(10.00 \text{ mol})(0.0821 \text{ L-atm/mol-K})(400 \text{ K})}{40.0 \text{ L}} = 8.21 \text{ atm}$$





Gas Stoichiometry Practice

In the fermentation of glucose, how many moles of carbon dioxide are produced for each kilogram of glucose that reacts? If the reaction takes place in a sealed container and the gas occupies a volume of 8.10 liters at a temperature of 21 °C, find the pressure of the carbon dioxide gas inside the container.

$$C_6H_{12}O_6~(s)\rightarrow 2~C_2H_6O~(l)~+~2~CO_2~(g)$$

 $g C_6H_{12}O_6 \Rightarrow Moles C_6H_{12}O_6 \Rightarrow Moles CO_2$

$$1,000 \ {}_{9} \ C_{6} H_{12} O_{6} \ x \ \frac{1 \ mol \ C_{6} H_{12} O_{6}}{180.18 \ {}_{9} \ C_{6} H_{12} O_{6}} \ x \ \frac{2 \ mol \ CO_{2}}{1 \ mol \ C_{6} H_{12} O_{6}} \ = 11.10 \ mol \ CO_{2}$$

Moles CO₂⇔ Pressure CO₂

CO₂ Pressure CO₂

$$P = \frac{nRT}{V} = \frac{(11.10 \text{ mot CO}_2)(0.0821-\text{t-atm/mot-K})(294 \text{ K})}{8.10 \text{ t-}}$$

(= 33.7 atm CO2

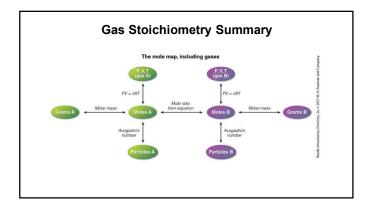
 $T = 21^{\circ}C + 273 = 294 \text{ K}$

Gas Stoichiometry, More Practice

Natural gas burns cleanly in air, according to this equation:

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

If 13.1 liters of CH₄ burn at a pressure of 1.00 atmosphere and a temperature of 290 K, what mass of carbon dioxide gas is produced?



Pressure, Volume $CH_4 \Rightarrow Moles CH_4$

$$n = \frac{PV}{RT} = \frac{(1.00 \text{ sem})(13.1+t)}{(0.0821 + \text{ sem}/\text{mol-K})(290 \text{ K})} = 0.550 \text{ moles CH}_4$$

 $\mathsf{Moles}\;\mathsf{CH}_4 \Rightarrow \mathsf{Moles}\;\mathsf{CO}_2 \Rightarrow \mathsf{Grams}\;\mathsf{CO}_2$

0.550 mol CH₄ x $\frac{1 \text{ mol CO}_2}{1 \text{ mol CH}_4}$ x $\frac{44.01 \text{ g CO}_2}{1 \text{ mol CO}_2}$ = 24.2 g CO₂

